博碩士論文 91523036 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:90 、訪客IP:18.216.251.190
姓名 黃逸隆(Yi-Lung Huang)  查詢紙本館藏   畢業系所 通訊工程學系
論文名稱 即時細緻可調性視訊在無線區域網路下之傳輸效率最佳化研究
(The study of optimal transmission for real-time FGS videos over WLAN)
相關論文
★ 基於區域權重之衛星影像超解析技術★ 延伸曝光曲線線性特性之調適性高動態範圍影像融合演算法
★ 實現於RISC架構之H.264視訊編碼複雜度控制★ 基於卷積遞迴神經網路之構音異常評估技術
★ 具有元學習分類權重轉移網路生成遮罩於少樣本圖像分割技術★ 具有注意力機制之隱式表示於影像重建 三維人體模型
★ 使用對抗式圖形神經網路之物件偵測張榮★ 基於弱監督式學習可變形模型之三維人臉重建
★ 以非監督式表徵分離學習之邊緣運算裝置低延遲樂曲中人聲轉換架構★ 基於序列至序列模型之 FMCW雷達估計人體姿勢
★ 基於多層次注意力機制之單目相機語意場景補全技術★ 基於時序卷積網路之單FMCW雷達應用於非接觸式即時生命特徵監控
★ 視訊隨選網路上的視訊訊務描述與管理★ 基於線性預測編碼及音框基頻週期同步之高品質語音變換技術
★ 基於藉語音再取樣萃取共振峰變化之聲調調整技術★ 線上視訊於IP網路可變延遲環境下之訊務平順化研究
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 隨著多媒體應用快速普及與多媒體資料編解碼技術成熟,加上無線網路蓬勃發展,多媒體資料在無線區域網路傳輸將是一個不可避免的趨勢。當封包在具有高錯誤機率的無線網路傳輸時,封包長度過小將使得封包檔頭的額外負荷提高,封包長度過大亦使封包發生錯誤機率提高,兩者皆會降低頻寬的使用效率。此外,在視訊編碼的過程中,不同型態的視訊封包具有不同重要性,若一視同仁地直接傳輸於無線網路中,將使得多媒體品質遭受嚴重的影響。
在本論文中,根據上述問題提出一套在無線區域網路下具有延遲限制的視訊封包最佳傳輸機制。本論文首先依據無線網路的傳送現況、封包檔頭的額外負荷、輪詢排程延遲、傳輸延遲、以及使用人數等因素,利用數學分析而得到最佳的封包長度。以此最佳封包長度為基礎,再針對MPEG-4 FGS特性以及視訊封包重要性差異,利用具優先等級的自動重送機制提出一套非對稱式視訊封包保護機制。本論文成果同時適用於所有無線區域網路,並且同時適用於IPv6以及IPv4網路層協定架構。模擬結果顯示,在IPv4/IPv6 IEEE 802.11 b/a/g等六種網路環境中,利用本論文所決定的封包長度傳輸於十種不同錯誤狀況時,均能達到最大頻寬使用率;此外,相較於其他固定封包長度進行傳輸,視訊品質亦有效地提升約1~2 dB。
摘要(英) Real-time streaming videos over IEEE 802.11 wireless networks are full of potential due to the great progress of digital compression and wireless network technologies. However, the delivery of video data with a large packet size may result in a high packet error rate on the error-prone channel of WLAN. On the other hand, using a small packet size may also increase the header overhead. This is a tradeoff between the packet error rate and header overhead. Additionally, considering the video encoding process, various video frames with different types have the distinct influence to the received video quality. An equal error protection to all video packets in the wireless network will degrade the video quality significantly.
Therefore, this paper proposes an integrated optimal transmission strategy for delivering the real-time video data over WLANs. The proposed strategy first develops a mathematic closed form of the optimal packet size for achieving the maximum bandwidth utilization. The analyses are accomplished based on the current error situation, transmission overhead, scheduling delay, transmission delay, and the number of connections. Moreover, using the calculated optimal packet size, a prioritized ARQ mechanism is proposed for providing the unequal error protection to the FGS video frames with different significances. The analyses show that, the proposed strategy can be applied to both IPv4 and IPv6 networks and any type of 802.11 WLANs. Furthermore, with the combination of ten error patterns and three video sequences, simulation results reveal that the video transmission in IPv6/IPv4 IEEE 802.11b/a/g wireless networks can achieve the maximum bandwidth utilization while increasing the received PSNR up to 2dB by using the proposed strateg
關鍵字(中) ★ 效率
★ 傳輸
★ 頻寬
★ 無線區域網路
★ 最佳封包長度
關鍵字(英) ★ Gilbert Model
★ bandwidth utilization
★ packetization
★ optimal transmission
★ WLAN
★ MPEG 4
★ FGS
論文目次 目錄
第一章 緒論 1
1.1研究背景與動機 1
1.2 相關研究 3
1.3 提出之機制與主要貢獻 5
1.4 論文架構 6
第二章 無線區域網路上的即時視訊串流服務 7
2.1 即時串流視訊之技術 8
2.2 MPEG-4 FGS視訊壓縮技術及特性 9
2.3 MPEG-4 網路視訊封裝機制 12
2.3.1 MPEG-4與RTP 12
2.3.2 MPEG-4視訊封裝演算法 14
2.4 IPv6新一代網際網路 17
2.4.1 IPv6 檔頭介紹 19
2.4.2 IPv6 訊務等級 20
2.5 IEEE 802.11無線區域網路媒體接取層(MAC) 21
2.5.1 分散協調式功能(DCF) 23
2.5.2 集中協調式功能(PCF) 25
2.5.3 增強分散協調式功能(EDCF) 27
2.5.4 IEEE 802.11 b/a/g 30
2.6自動重送機制(ARQ) 34
第三章 MPEG-4 FGS視訊與WLAN之關係 35
3.1 MPEG-4 FGS 視訊資料之分析 36
3.1.1 MPEG-4 FGS視訊資料量之分析 36
3.1.2不同編碼型態與視訊品質之關係 40
3.2 具錯誤特性之IEEE 802.11 WLAN之分析 43
3.2.1 IEEE 802.11 DCF模式之效能分析 43
3.2.2 IEEE 802.11 PCF模式之效能分析 47
3.2.3 IEEE 802.11 EDCF模式之效能分析 48
3.2.4 IEEE 802.11 無線網路錯誤模式之分析 49
3.3自動重送機制應用於即時視訊資料傳輸之限制分析 52
第四章 無線區域網路即時視訊封包封裝機制 59
4.1系統架構 60
4.1.1 IEEE 802.11擷取點 61
4.1.2視訊串流伺服器 63
4.1.3視訊客戶端 64
4.2由無線網路總頻寬使用率觀點討論系統流量 64
4.2.1 IEEE 802.11 WLAN擷取點之決定最佳封包長度單元 70
4.3封包封裝、優先權決定與優先權ARQ機制 71
4.3.1視訊封包封裝機制 71
4.3.2優先權視訊封包決定機制 74
4.3.3優先權ARQ 74
第五章 實驗結果與討論 76
5.1 無線區域網路頻寬使用率之模擬 76
5.1.1 模擬環境說明和參數定義 76
5.1.2 模擬結果與說明 79
5.1.3 IPv4與IPv6環境之比較 92
5.1.4 不同IEEE 802.11實體層環境之比較 93
5.1.5 最佳封包資料長度、封包檔頭與封包錯誤率之關係 93
5.2 視訊封包封裝機制對於視訊品質的影響 95
5.2.1模擬環境說明和參數定義 96
5.2.2 視訊封包封裝機制比較 97
第六章 結論 100
參考文獻 101
參考文獻 [1] IEEE 802.11, “Part 11: Wireless LAN Medium Access Control (MAC) and Physical Layer (PHY) Specifications,” Standard, IEEE, Aug. 1999.
[2] ISO/IEC JTC1/SC29/WG11, “Information Technology-Coding ofAudio-Visual Objects, Part 1: System, Part 2: Visual, Part 3: Audio,” FCD 14496, Dec. 1998.
[3] ISO/IEC JTC1/SC29/WG11, “MPEG-4 Video Verification Modelversion 18.0,” N3908, Jan. 2001.
[4] ISO/IEC JTC1/SC29/WG11, “Fine Granularity Scalability Using Bit-Plane Coding of DCT Coefficients,” M4204, Dec. 1998.
[5] W. Li, “Overview of Fine Granularity Scalability in MPEG-4 Video Standard,” IEEE trans. on Circuits and Syst. Video Technol, vol.11, no.3, pp.301-317, Mar. 2001.
[6] M. Schwartz, “Telecommunication Networks: Protocols, Modeling and Analysis,” Addision-Wesley, pp. 119-135, Mar. 1987.
[7] A. Doufexi, D. Redmill, D. Bull and A. Nix, “MPEG-2 Video Transmission Using the HiperLAN/2 WLAN Standard,” IEEE Trans. Consumer Electron, vol. 47, no. 3, pp. 354-363, Aug. 2001.
[8] Q. Li and M. van der Schaar, “Providing Adaptive QoS to Layered Video over Wireless Local Area Networks through Real-Time Retry Limit Adaptation,” IEEE Trans. Multimedia, Apr. 2004.
[9] E. Modiano, “Data link protocols for LDR MILSTAR communications,” Lincoln Laboratory, Communications Division Internal Memorandum, Oct. 1994.
[10] E. Modiano, “An adaptive Algorithm for Optimizing The Packet Size Used in Wireless ARQ Protocols,” Wireless Network, pp. 279-286, May 1999.
[11] M. Shreedhar and G. Varghese, “Efficient Fair Queuing Using Deficit Round-Robin,” IEEE Trans. Networking, vol. 4, no. 3, pp. 328-333, Jun. 1996.
[12] 林勤偉, “視訊隨選網路上的視訊訊務描述與管理,” 國立中央大學通訊工程研究所碩士論文, 中華民國九十一年六月.
[13] S. S. Kanhere and H. Sethu, “On the Latency Bound of Deficit Round Robin,” in Proc. IEEE International Conference on Computer Communications and Networks, pp. 548-553, Oct. 2002.
[14] I. Moccagatta, S. Soudagar, J. Liang, and H. Chen, “Error-Resilient Coding in JPEG-2000 and MPEG-4,” IEEE J. Select. Areas Commun., vol. 18, no. 6, pp. 899-914, Jun. 2000.
[15] AVT Working Group, H. Schulzrinne, S. Casner, R. Frederick, V. Jacobson, “RTP: A Transport Protocol for Real-Time Applications,” RFC 1889, Jan. 1996.
[16] Y. Kikuchi, T. Nomura, S. Fukunaga, Y. Matsui, H. Kimata, “RTP Payload Format for MPEG-4 Audio/Visual Streams,” RFC 3016, Nov. 2000.
[17] J. van der Meer, Philips Electronics, D. Mackie, V. Swaminathan, D. Singer, P. Gentric, “RTP Payload Format for Transport of MPEG-4 Elementary Streams,” draft-ietf-avt-mpeg4-simple-07, Feb. 2003.
[18] D. Wu, Y.T. Hou, W. Zhu, T.H. Chiang, Y.Q. Zhang and H.J. Chao, “On end-to-end architecture for transporting MPEG-4 video over the Internet,” IEEE Trans. Circuits Syst. Video Technol., vol. 10, pp. 923-941, Sept. 2000.
[19] F.L. Leannec and G.M. Guillemot, “Error Resilient Video Transmission Over the Internet,” in SPIE Proceeding Visual Communications and Image Processing (VCIP’99), Jan. 1999.
[20] T. Turletti and C. Huitema, “RTP payload format for H.261 video streams,” RFC 2032, Oct. 1996.
[21] C. Zhu, “RTP payload format for H.263 video streams,” RFC 2190, Sept. 1997.
[22] K. Nichols, S. Blake, F. Baker, and D. Black, “Definition of the Differentiated Services Field (DS Field) in the IPv4 and IPv6 Headers,” RFC 2474, Dec. 1998.
[23] K. Nicholsand K. Poduri, “An Expedited Forwarding PHB,” RFC 2598, Jun. 1999.
[24] J. Heinanen, F. Baker, W. Weiss, and J. Wroclawski, “Assured Forwarding PHB Group,” RFC 2597, Jun. 1999.
[25] 曾毓婷, “支援ATM之IEEE 802.11多重擷取層協定,” 國立臺灣大學電信工程學研究所碩士論文, 中華民國八十九年六月.
[26] IEEE 802.11, “Part 11: Wireless LAN Medium Access Control (MAC) and Physical Layer (PHY) Specifications: High-speed Physical Layer Extension in the 2.4 GHz Band,” Standard, IEEE, Sep. 1999.
[27] IEEE 802.11, “Part 11: Wireless LAN Medium Access Control (MAC) and Physical Layer (PHY) Specifications: High-speed Physical Layer in the 5 GHz Band,”Standard, IEEE, Sep. 1999.
[28] IEEE 802.11, “Part 11: Wireless LAN Medium Access Control (MAC) and Physical Layer (PHY) Specifications: Amendment 4:Further Higher Data Rate Extension in the 2.4 GHz Band,”Standard, IEEE, Jun. 2003.
[29] IEEE 802.11, “Part 11: Wireless Medium Access Control (MAC) and Physical Layer (PHY) Specifications: Medium Access Control (MAC) Enhancements for Quality of Service (QoS),”Draft 6.0, IEEE, Nov. 2003.
[30] 黃能富 著, “區域網路與高速網路,” 維科出版社, 中華民國八十七年六月.
[31] J.Y Yeh and C. Chen, “Support of Multimedia Services with the IEEE 802.11 MAC Protocol,” in Communications, 2002. ICC 2002. IEEE International Conference, vol. 1, pp. 600-604, May 2002.
[32] S. Choi, J. del Prado, N Sai Shankar, and S. Mangold, “IEEE 802.11e Contention-Based Channel Access (EDCF) Performance Evaluation,” in Communications, 2003. ICC 2003. IEEE International Conference, vol. 2, pp. 1151-1156, May 2003.
[33] (2003, Jul.). IEEE 802.11g - The New Mainstream Wireless LAN Standard, Document 802.11g-WP104-R. [Online]. Available: http://www.54g.org
[34] M. Chen and G. Wei, “A novel hybrid ARQ algorithm for real-time video transport over wireless LAN,” on Personal, Indoor and Mobile Radio Communications, 2003. PIMRC 2003. 14th IEEE Proceedings, vol. 3, pp.2426 – 2430, Sep. 2003.
[35] J.Takahashi, H.Tode, and K.Murakami, “QoS Enhancement Methods for MPEG Video Transmission on the Internet,” IEICE Trans. Commun., vol. E85-B, no.5, pp. 1002-1011, May 2002.
[36] Yang Xiao and Jon Rosdahl, “Throughput Analysis for IEEE 802.11a Higher Data Rates,” IEEE 802.11 Planetary Meeting, Document Submission: IEEE 802.11-02-138r0, St. Louis, Mar. 2002.
[37] 陳紹偉, “視訊封包封裝與調適性自動重送於無線區域網路之研究,” 國立中央大學通訊工程研究所碩士論文, 中華民國九十二年六月.
[38] C. Jiao, L. Schwiebert, and B. Xu, “On Modeling the Packet Error Statistics in Bursty Channels,” IEEE Conference on Local Computer Networks (LCN'02), Nov. 2002.
[39] E.N. Gilbert, “Capacity of a Burst-Noise Channel,” Bell System Technical Journal, pp. 1253-1266, Sep. 1960.
[40] J.R.Yee, E.J.Weldon, “Evaluation of the performance of error correcting codes on a Gilbert channel,” IEEE Trans. Commun., vol. 43, no 8, pp. 2316-2323, Aug. 1995.
[41] H.D.Robert, “Hybrid ARQ Schemes for Point to Multipoint Communication Over Nonstationary Broadcast Channels,” IEEE Trans. Commun., vol. 41, no 9, pp. 1379-1387, Sep. 1993.
[42] E. Gelenbe and G. Pujolle, translated by J.C.C. Nelson, “Introduction to Queueing Networks,” John Wiley & Sons, pp. 168-171, Dec. 1987.
[43] Y. Shan and A. Zakhor, “Cross Layer Techniques For Adaptive Video Streaming Over Wireless Network,” in International Conference on Multimedia and Expo, pp. 277-280, Aug. 2002.
[44] Y.Q. Shi and H. Sun, “Image and Video Compression for Multimedia Engineering,” CRC Press LLC, 2000.
指導教授 張寶基(Pao-Chi Chang) 審核日期 2004-7-17
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明