博碩士論文 105821608 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:105 、訪客IP:3.139.105.231
姓名 司峇塔(BASTA SIMANULLANG)  查詢紙本館藏   畢業系所 生命科學系
論文名稱 在空間學習和記憶形成後對海馬迴中表觀遺傳修飾調控 miRNA 表現的研究研
(The investigation of the epigenetic modification regulated mi-RNA induction in the hippocampus after spatial learning and memory formation)
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 行為是由環境刺激驅動的,這種刺激通過許多分子機制觸發大腦活動。學習和記憶的過程包括
刺激誘導的海馬神經元之間的突觸連接的變化,其在長期的體細胞和情節記憶的形成中起關鍵作用。通
過Morris 水迷宮實驗與RNA 的分析表明,在有學習和未學習的小鼠之間存在微小RNA 表達不同。屬
於轉錄後調節因子的miR-466f-3p 在腦中大量表現且其在基因中位於一基因的內含子-10 中(Sfmbt2)。然
而,宿主基因(sfmbt2)的mRNA 表現量與miR-466f-3p 顯著不同。表觀遺傳修飾,如DNA 甲基化可影
響基因表達。5′Aza-dC,一個甲基轉移酶抑製劑,用於處理海馬迴原代培養神經元導致Bdnf,Nrf2 和Sfmbt2
mRNA 與miR466f-3p 的表現量增加。根據實驗結果顯示,miR-466f 家族的啟動子區域中其甲基化模式
在有學習和未學習的小鼠之間沒有顯著差異。證據表明,在Morris 水迷宮的應激下,DNA 甲基化的變化
不直接參與誘導miR-466f-3p 在海馬依賴性空間學習和記憶形成的調節。
摘要(英) Behavior is driven by environmental stimulation that triggers brain activity with lots of
molecular mechanisms. The process of learning and memory contains stimulation-induced
changes that happen in the synaptic connections between neurons in the hippocampus, which
plays a pivotal role in the formation of long term somatic and episodic memories. By Morris
water maze experiment and RNA analysis, we show that some micro-RNAs (miRNA) are
expressed differently between learned and unlearned mice. One of the miRNAs, miR-466f-3p,
which belongs to post transcriptional regulator, is abundantly express in brain and generated in
the intron-10 of Sfmbt2 gene. However, the mRNA expression of Sfmbt2 is significantly
different from miR-466f-3p. Inhibition of epigenetic modification, such as DNA methylation,
can affect gene expression. Treatment of 5’Aza-dC, a methyltransferase inhibitor, to the
hippocampal primary culture neuron causes Bdnf, Nrf2, Sfmbt2 mRNA and miR466f-3p
expression increased. However, the methylation pattern in the promoter region of the miR-466f
cluster is not significantly different between learned and unlearned mice. The evidence show
that the changes of DNA methylation under the stress of the Morris water maze indirectly
participate in the regulating of miR-466f-3p induction in the hippocampus-dependent spatial
learning and memory formation.
Keywords: Epigenetic, mi-RNAs induction, Methylation
關鍵字(中) ★ 表觀遺傳
★ mi-RNAs 誘導
★ 甲基化
關鍵字(英) ★ Epigenetic
★ mi-RNAs induction
★ Methylation
論文目次 Table of Contents
Abstract . i
中文摘要 ii
Acknowledgement iii
Table of Contents . iv
List of Figures . vi
List of Tables . vii
Abbreviations .. viii
Chapter 1 Introduction . 1
1.1. Learning and Memory . 1
1.2. Sfmbt2 host gene, miRNA cluster and memory formation .. 2
1.3. MicroRNA biogenesis . 2
1.4. Epigenetic modification .. 2
1.4.1. Methylation 3
1.4.2. 5’Aza-dC as a methytransferase inhibitor 3
1.4.3. Sodium Bisulfate Treatment 4
1.5. Research and Purposes 4
Chapter 2 Materials and Methods .. 6
2.1. Morris water maze task 6
2.2. Genomic DNA extraction .. 6
2.3. Bisulfate treatment . 6
2.4. Epi-tag PCR .. 7
2.5. Gel-PCR purification 8
2.6. Blunting and ligation 8
2.7. Transformation . 8
2.8. Colonies screening . 9
2.9. DNA mini preparation . 9
2.10. Sequencing analysis 10
2.11. Cell line culture . 10
2.12. Hippocampal primary culture 10
2.13. RNA purification . 11
2.14. Reverse transcriptase PCR (RT-PCR) 11
2.15. Polymerase chain reaction (PCR) 12
2.16. Quantitative polymerase chain reaction (Q-PCR) .. 12
2.17. MicroRNA RT-Q-PCR .. 13
Chapter 3 Results . 14
3.1. mRNA expression of Sfmbt2 is increase in N2a cell line under 5’Aza-dC treatment at a time-and dose-dependent manner 14
3.2. Sfmbt2 mRNA expression is increased in primary hippocampal neuron under 5’Aza-dC treatment in a time and dose dependent manner 14
3.3. Percentage of DNA methylation in some specific CpG sites are significantly different before and after training of C57BL/6J Wild-Type (WT) mice .. 15
3.4. DNA Methylation of F1 generation is hypomethylated compare to F0 in hippocampus.. 15
3.5. DNA methylation pattern in hippocampus of F1 mice before and after training 16
3.6. DNA methylation pattern in liver of F0 and F1 (LNxWT) mice before and after training .. 17
Chapter 4 Discussion . 18
Chapter 5 Conclusion 21
References .. 22
參考文獻 REFERENCE
[1] Nunez J. (2008). Morris Water Maze Experiment. DOI: 10.3791/897. URL:
http://www.jove.com/index/Details.stp?ID=897
[2] Vorhees CV and Williams MT. (2006). Morris water maze: procedures for assessing
spatial and related forms of learning and memory. Nat Protoc. 2006; 1(2): 848–858.
doi:10.1038/nprot.2006.116.
[3] Barnhart CD., Yang D., and Lein PJ. (2015). Using the Morris Water Maze to Assess
Spatial Learning and Memory in Weanling Mice. PLOS ONE|
DOI:10.1371/journal.pone.0124521
[4] Inoue et al., (2017). The Rodent-Specific MicroRNA Cluster within the Sfmbt2 Gene Is
Imprinted and Essential for Placental Development. Cell Reports 19, 949–956.
http://dx.doi.org/10.1016/j.celrep.2017.04.018
[5] https://www.ncbi.nlm.nih.gov/gene?Db=gene&Cmd=DetailsSearch&Term=353282
[6] http://www.informatics.jax.org/marker/MGI:2447794
[7] O′Brien J., Hayder H., Zayed Y., and Peng C. (2007). Overview of MicroRNA
Biogenesis, Mechanisms of Actions, and Circulation. Front Endocrinol (Lausanne).
Doi: 10.3389/fendo.2018.00402
[8] Day JJ and Sweatt JD. (2011). DNA methylation and Memory Formation. Nat
Neurosci.2010 Nov; 13(11): 1319–1323. doi: 10.1038/nn.2666 P
[9] Yang X., Shao X., Gao L. and Zhang S. (2016). Comparative DNA methylation analysis
to decipher common and cell type-specific patterns among multiple cell types. Brief
Funct Genomics. 2016 Nov;15(6):399-407. Epub 2016 Apr 23.
[10] Ptak C., BScH., Petronis A. (2010). Basic research I Epigenetic approaches to
psychiatric disorders. Dialogues Clin Neurosci. 2010;12(1):25-35.
[11] Whalley K. (2007). Dynamic DNA methylation. Nature Reviews.
Neuroscience volume8, page323 (2007)
[12] Zhang Z et al., (2016). Effects of 5-Aza-20-deoxycytidine on expression of PP1g in
learning and memory. Biomedicine & Pharmacotherapy 84 (2016) 277–283
[13] Lister R et al., (2013). Global Epigenomic Reconfiguration During Mammalian Brain
Development. Science. 2013 August 9; 341(6146): 1237905–1237905
[14] Christman JK. (2002). 5-Azacytidine and 5-aza-2′-deoxycytidine as inhibitors of DNA
23
methylation: mechanistic studies and their implications for cancer therapy. Oncogene
(2002) 21, 5483 – 5495
[15] Seelan RS et al., (2018). Effects of 5-Aza-2′-deoxycytidine (decitabine) on gene
expression. Drug Metab Rev. 2018 May;50(2):193-207. doi:
10.1080/03602532.2018.1437446.
[16] Ovkvist CL et al., (2016). DNA methylation in human epigenomes depends on local
topology of CpG sites. Nucleic Acids Research, 2016, Vol. 44, No. 11 5123–5132. Doi:
10.1093/nar/gkw124
[17] Darst RP. (2010). Bisulfite Sequencing of DNA. Curr Protoc Mol Biol. 2010 July;
CHAPTER: Unit–7.917. Doi:10.1002/0471142727.mb0709s91
[18] Li Y et al., (2019). DNA methylation, microRNA expression profiles and their
relationships with transcriptome in grass-fed and grain-fed Angus Cattle rumen tissue.
CC-BY 4.0 International license. doi: http://dx.doi.org/10.1101/581421
[19] Li Y and Tollefsbol TO. (2011). DNA methylation detection: Bisulfite genomic
sequencing Analysis. Methods Mol Biol. 2011; 791: 11–21.
doi:10.1007/978-1-61779-316-5_2.
[20] Zhou G., Xiong WX., Zhang XG., Ge SJ. (2013). Retrieval of Consolidated Spatial
Memory in the Water Maze Is Correlated with Expression of pCREB and Egr1 in the
Hippocampus of Aged Mice. Dement Geriatr Cogn Disord Extra 2013;3:39–47. DOI:
10.1159/000348349
[21] Tsuda M et al., (2002). Involvement of an Upstream Stimulatory Factor as Well as
cAMP-responsive Element-binding Protein in the Activation of Brain-derived
Neurotrophic Factor Gene Promoter I*. JBC Papers in Press, July 11, 2002, DOI
10.1074/jbc.M204784200
[22] Palacios D., Summerbell D., Rigby PWJ and Boyes J. (2010). Interplay between DNA
Methylation and Transcription Factor Availability: Implications for Developmental
Activation of the Mouse Myogenin Gene. MOLECULAR AND CELLULAR
BIOLOGY, Aug. 2010, p. 3805–3815 Vol. 30, No. 15 0270-7306/10/$12.00
doi:10.1128/MCB.00050-10
[23] Saunderson EA et al., (2016). Stress-induced gene expression and behavior are
controlled by DNA methylation and methyl donor availability in the dentate gyrus.
4830–4835 | PNAS | April 26, 2016 | vol. 113 | no. 17
24
www.pnas.org/cgi/doi/10.1073/pnas.1524857113
[24] Sherrin T et al., (2010). Hippocampal c-Jun-N-Terminal Kinases Serve as Negative
Regulators of Associative Learning. The Journal of Neuroscience, October 6, 2010.
30(40):13348 –13361
[25] Heurteaux C., Messier C., Destrade and Lazdunski M., (1992). Memory processing and
apamin induce immediate early gene expression in mouse brain. Molecular Brain
Research, 3 (1993) 17-22
[26] Miller CA and Sweatt JD. (2007). Covalent Modification of DNA Regulates Memory
Formation. Neuron 53, 857–869, March 15, 2007 a2007 Elsevier Inc. DOI
10.1016/j.neuron.2007.02.022
[27] Zenk F et al., (2017). Germ line–inherited H3K27me3 restricts enhancer function during
maternal-to-zygotic transition. Science 357, 212 –216 (20 17).
http://science.sciencemag.org/
[28] Anway MD. (2006). Endocrine Disruptor Vinclozolin Induced Epigenetic
Transgenerational Adult-Onset Disease. Endocrinology 147(12):5515–5523. doi:
10.1210/en.2006-0640
[29] Chen Q et al., (2016). Sperm tsRNAs contribute to intergenerational inheritance of an
acquired metabolic disorder. SCIENCE sciencemag.org 22 JANUARY 2016 • VOL 351
ISSUE 6271. http://science.sciencemag.org/
[30] Fischer C et al., (2004). Activating Transcription Factor 4 Is Required for the
Differentiation of the Lamina Propria Layer of the Vas Deferens1. BIOLOGY OF
REPRODUCTION 70, 371–378 (2004). DOI 10.1095/biolreprod.103.021600
[31] Hajkova P et al., (2002). Epigenetic reprogramming in mouse primordial germ cells.
Mechanisms of Development 117 (2002) 15–23. PII: S0925-4773(02)00181-8
[32] Huypens P et al., (2016). Epigenetic germline inheritance of diet-induced obesity and
insulin resistance. Nature Genetics VOLUME 48 | NUMBER 5 | MAY 2016.
doi:10.1038/ng.3527
[33] Chen Z et al., (2017). Impaired learning and memory in rats induced by a high-fat diet:
Involvement with the imbalance of nesfatin-1 abundance and copine 6 expression.
Journal of Neuroendocrinology. 2017; 29:1–12. DOI: 10.1111/jne.12462
指導教授 沈哲鯤(Dr. Che-Kun James Shen) 審核日期 2019-8-1
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明