博碩士論文 106827604 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:138 、訪客IP:52.14.17.240
姓名 裘納(Narangerel Choimbol)  查詢紙本館藏   畢業系所 生醫科學與工程學系
論文名稱 基於PEG的益生元對痤瘡痤瘡桿菌的表皮葡萄球菌發酵和電的研究
(Investigation of fermentation and electricity of Staphylococcus epidermidis using PEG-based prebiotic against Cutibacterium acnes)
相關論文
★ Intelligent nature-derived coordinative hydrogel incorporated with HRP as dressing for infected wounds★ 表皮葡萄球菌在人類皮膚微生物總體對皮膚訊號與腦波訊號影響
★ 土壤微生物組體研究:藉由內生細菌誘導之高GABA含量水稻增加神經肽Y以及減輕小鼠焦慮★ Fermentation of Leuconostoc mesenteroides reduces abdominal fat accumulation in high-fat diet mice
★ 選擇性發酵引發劑(SFI)觸發表皮葡萄球菌發酵以緩解UV-B誘導的自由基生成★ Identify and characterize the fermenting and electrogenic skin bacteria using selective prebiotics
★ 有益微生物的真菌學和細菌學研究: 在農業和人類健康中的應用★ 人體皮膚致電微生物組通過調節鐵和自由基來減輕紫外線B引起的皮膚損傷。
★ 微生物組中的細菌作為治療人類疾病的生物療法★ 皮膚表皮葡萄球菌作為電力活性菌以抑制痤瘡丙酸桿菌
★ 鼠李糖乳桿菌作為益生菌對抗 SARS-CoV-2 膜糖蛋白誘導的炎症★ Flavin mononucleotide-based electricity production by Staphylococcus epidermidis alleviates SARS-CoV-2- Nucleocapsid Phosphoprotein-induced IL-6 expression
★ Profiling the Age-related Microbiome via Detection of Antibodies to Gut Bacteria★ 基於PEG的益生元影響皮膚細菌和皮膚電的發酵
★ 液化澱粉芽孢桿菌用於產生富含GABA的水稻以增強小鼠皮膚中膠原蛋白表達的可能機制★ 設計開發全氟碳複合奈米藥物載體對體表微生物多效抑菌功能之研究
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 在人類生活中存在許多微生物,包括共生和致病微生物。人體皮膚的表面有痤瘡丙酸桿菌和表皮葡萄球菌。痤瘡丙酸桿菌和表皮葡萄球菌都是革蘭氏陽性細菌:其中痤瘡丙酸桿菌是厭氧菌,而表皮葡萄球菌在有氧條件下生長最好。痤瘡丙酸桿菌在痤瘡中發揮積極作用,進而在生命中的某些時刻會影響85-100%的人口。雖然尋常痤瘡不會危及生命,但嚴重的痤瘡會嚴重影響患者的心理狀態,從而減少他們對社交活動的參與。皮膚導電性是皮膚電導率的測量。目前發現一些人體皮膚和腸道細菌可以產生電力。因此,我們假設人類皮膚細菌影響皮膚導電性。在該研究中,我們使用2%聚乙二醇10(PEG-10)來誘導表皮葡萄球菌的發酵並產生電壓。我們的研究結果表明皮膚細菌可以產生電能。具有表皮葡萄球菌的2%PEG-10在ICR小鼠中引發皮膚導電性的電子。電子是由表皮葡萄球菌產生的,具有2%PEG-10發酵,其可以抑制痤瘡丙酸桿菌的生長。
摘要(英) There are many microbiotas including symbiotic and pathogenic microorganisms in humans. The surface of the human skin habits both Cutibacterium acnes (C. acnes) and on the face and Staphylococcus epidermidis (S. epidermidis). Both C. acne and S. epidermidis are gram-positive bacteria: C. acnes are anaerobes whereas S. epidermidis grows best in aerobic condition. C. acnes plays an active role in acne vulgaris, affecting 85-100% of the population at some point in their lives. Although acne vulgaris is not life-threatening, severe acne can greatly burden a patient’s psychological status, and thereby reduce their participation in social activities. Skin conductance is the measurement of the electrical conductivity of the skin. Some human skin and gut bacteria can produce electricity. We thus hypothesize that human skin bacteria affect skin conductance. In this study, we used 2% polyethylene glycol 10 (PEG-10) to induce fermentation of S. epidermidis and generated a voltage. Our results suggest that skin bacteria can produce electricity. 2% PEG-10 with S. epidermidis provoked the electricity in the skin conductance in ICR mice. The electron was produced from S. epidermidis with 2% PEG-10 fermentation which can inhibit growth of the C. acnes.
關鍵字(中) ★ 寻常痤疮
★ 痤疮丙酸杆菌(Cutibacterium acnes)
★ 电
★ 发酵
★ PEG-10(聚乙二醇10)
★ 表皮葡萄球菌 (表皮葡萄球菌)
關鍵字(英) ★ Acne vulgaris
★ electricity
★ fermentation
★ PEG-10 (polyethylene glycol 10)
★ S. epidermidis (Staphylococcus epidermidis)
★ C. acnes (Cutibacterium acnes)
論文目次 Abstract ..................... III
Acknowledgments .....IV
List of Figures ..........VII
List of Abbreviations ................................................ VIII
1.1 The skin microbiome ........................................... 1
1.2 Acne vulgaris ..... 1
1.3 S. epidermidis against C. acnes ................................ 3
1.4 Fermentation of bacteria .......................................... 4
1.5 Bacterium .............. 7
1.5.1 Staphylococcus epidermidis ............................... 7
1.5.2 Cutibacterium acnes (Propionibacterium acnes) ................................................. 8
1.6 How bacterial can produce electricity? ..................... 9
1.7 Polyethylene glycol ............................................... 10
1.8 Skin patch ............ 11
1.9 Multimeter detection .............................................. 12
2.1 Materials .............. 13
2.2 Animals ............... 14
2.3 Methods ............... 14
2.3.1 Bacterial Culture .............................................. 14
2.3.2 O. D measurement ........................................... 15
2.4 Medium preparation ............................................... 15
2.4.1 TSB medium preparation ................................. 15
2.4.2 TSB with Phenol Red medium preparation ...... 15
2.4.3 RCM selective agar preparation ....................... 16
2.5 Prolong voltage detection from S. epi with 2% PEG-10 fermentation. ..................... 16
2.6 Determine minimum bactericidal concentration of 2% PEG-10 ........................... 16
2.7 In vivo experiment ................................................. 17
2.7.1 Voltage measurement on mouse back skin treated with S. epidermidis.............. 17
2.7.2 Voltage measurement on mouse back skin treated with PEG-10........................ 18
Chapter 3: Results ...... 19
3.1 Staphylococcus Epidermidis voltage measurement on mice dorsal back skin ........... 19
3.2 Staphylococcus Epidermidis + medium voltage measurement on mice dorsal back skin.................................. 20
3.3 2% PEG-10 + S. epidermidis and 2% PEG-10 + S. epidermidis voltage measurement
on mice dorsal back skin .............................................. 21
3.4 S. epidermidis + medium and S. epidermidis + 2% PEG-10 voltage measurement on
mice dorsal back skin 22
3.5 Prolong voltage detection from S. epi with 2% PEG-10 fermentation. ..................... 23
3.6 Reduction of C. acnes colonization and inflammation in vitro by PEG-10 fermentation
of S. epidermidis ........ 24
3.7 Determine minimum bactericidal concentration of 2% PEG-10 ............................... 25
Discussion and Conclusion .......................................... 26
Reference .................. 28
APPENDIXES .......... 31
參考文獻 1. Allyson L. Byrd, Yasmine Belkaid and Julia A. Segre.; The human skin microbiome, MICROBIOLOGY VOLUME 16 | MARCH 2018 | 143
2. Claudel J.-P.; Auffret N.; Leccia M.-T.; Poli F.; Corvec S.; Dréno B.; Staphylococcus epidermidis: A Potential New Player in the Physiopathology of Acne? Dermatology 2019; 235:287–294
3. Alan M. O’Neill and Richard L. Gallo.; Host-microbiome interactions and recent progress into understanding the biology of acne vulgaris
4. Webster GF. Inflammation in acne vulgaris. J Am Acad Dermatol. 1995; 33:247–53.
5. Rajiv, P.; Nitesh, K.; Raj, K.; Hemant, G.K. Staphylococcus epidermidis in human skin microbiome associated with acne: a cause of disease or defence? Res. J. Biotechnol. 2013, 8, 78–82.
6. Christensen, G.J.; Scholz, C.F.; Enghild, J.; Rohde, H.; Kilian, M.; Thürmer, A.; Brzuszkiewicz, E.; Lomholt, H.B.; Brüggemann, H. Antagonism between Staphylococcus epidermidis and Propionibacterium acnes and its genomic basis. BMC Genom. 2016, 17, 152.
7. M. Dekker Hui et al; Handbook of vegetable preservation and processing. New York: (2004).
8. Prescott, Lansing M.; Harley, John P; Klein, Donald A; Microbiology (6th ed.). New York: (2006).
9. Akihiro Okamoto., Yoshihide Tokunou., Shafeer Kalathil., Kazuhito Hashimoto.; Proton Transport in the Outer‐Membrane Flavocytochrome Complex Limits the Rate of Extracellular Electron Transport, Angew. Chem. Int. Ed. 2017, 56, 9082 –9086
10. Wong JM, de Souza R, Kendall CW, Emam A, Jenkins DJ.; "Colonic health: Fermentation and short chain fatty acids". Journal of Clinical Gastroenterology. (2006). 40 (3): 235–43
11. Kuksis, Arnis "Biochemistry of Glycerolipids and Formation of Chylomicrons". In Christophe, Armand B.; DeVriese, Stephanie (eds.). Fat Digestion and Absorption. The American Oil Chemists Society. (2000). p. 163.
12. Byrne, C. S; Chambers, E. S; Morrison, D. J; Frost, G.; "The role of short-chain fatty acids in appetite regulation and energy homeostasis". International Journal of Obesity. (2015). 39 (9): 1331–1338
13. Roy, Claude C.; Kien, C. Lawrence; Bouthillier, Lise; Levy, Emile "Short-Chain Fatty Acids: Ready for Prime Time?". Nutrition in Clinical Practice. (2006). 21 (4): 351–366.
14. MengLia., Betty C.A.M.van Esch., Gerry T.M.Wagenaar., Johan Garssen., GertFolkerts., Paul A.J.Henricksa., Pro- and anti-inflammatory effects of short chain fatty acids on immune andendothelial cells. European Journal of Pharmacology 831 (2018) 52–59
15. Nilsson, Lars, Flock, Pei, Lindberg, Guss. “A Fibrinogen-Binding Protein of Staphylococcus epidermidis.” Infection and Immunity. Vol. 66, No. 6 (June 1998); p. 2666-2673
16. Otto M., Staphylococcus epidermidis--the ′accidental′ pathogen. Nature reviews. Microbiology, 7(8), (2009). 555-67.
17. Kirschbaum JO, Kligman AM. The pathogenic role of Corynebacterium acnes in acne vulgaris. Archives of Dermatology. 1963; 88:832–833.
18. Adlam C, Scott MT. Lymphoreticular stimulatory properties of Corynebacterium parvo and related bacteria. Journal of Medical Microbiology. 1973; 6:261–274.
19. Potter MC (1911) Electrical effects accompanying the decomposition of organic compounds. Proc R Soc Lond B 84:260–276
20. Deeksha Lal. Indian J Microbiol (Jan–Mar 2013) 53(1):120–122
21. Pepe, R. C., J. A. Wenninger, and G. N. McEwen, Jr., eds. 2002. International cosmetic ingredient dictionary and handbook, 9th ed. Washington, DC: CTFA.
22. Lundmark, L., H. Chun, and A. Melby. 1976. Soya Sterols: Functional Plant Derived Ingredients for Toiletries—Part 1. Soap Cosmet. Chem. Spec. 52: 33–4, 38, 40
23. Nikitakis, J. M., and G. N. McEwen, Jr., eds. 1990. CTFA compendium of cosmetic ingredient composition—description I. Washington DC: CTFA
24. Kao et al, Microbiome precision editing: Using PEG as a selective fermentation initiator against methicillin-resistant Staphylococcus aureus, Biotechnol J. 2017 April; 12(4)
25. Dimarzio, L.; Cinque, B.; Cupelli, F.; De Simone, C.; Cifone, M.; Giuliani, M. Increase of skin-ceramide levels in aged subjects following a short-term topical application of bacterial sphingomyelinase from Streptococcus thermophilus. Int. J. Immunopathol. Pharmacol. 2008, 21, 137–143.
26. Wang, Y., Kuo, S., Shu, M., Yu, J., Huang, S., Dai, A., Two, A., Gallo, R. L., Huang, C. Staphylococcus epidermidis in the human skin microbiome mediates fermentation to inhibit the growth of Propionibacterium acnes: implications of probiotics in acne vulgaris M. Applied microbiology and biotechnology, (2013) ;98(1), 411-24.
指導教授 黃俊銘(Chun-Ming Huang) 審核日期 2019-7-12
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明