博碩士論文 91523049 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:58 、訪客IP:13.59.126.25
姓名 吳怡姍(Yi-Shan Wu)  查詢紙本館藏   畢業系所 通訊工程學系
論文名稱 2.5Gbps雷射二極體驅動電路及2.4/5.2GHz雙頻帶射頻接收器之研究
(The Study on 2.5Gbps Laser Driver and 2.4/5.2GHz Dual Band RF Receiver)
相關論文
★ 應用於筆記型電腦數位電視單極天線之研製★ 應用於數位機上盒與纜線數據機之電纜多媒體傳輸標準多工濾波器
★ 印刷共面波導饋入式多頻帶與超寬頻天線設計★ 微波存取全球互通頻段前向匯入式功率放大器與高效率Class F類功率放大器暨壓控振盪器電路之研製
★ 應用於矽基功率放大器與混頻器之傳輸線型變壓器研究★ 應用於V-頻段射頻收發機前端電路之低功耗源極注入式混頻器之研製
★ 應用積體電路上方後製程與整合被動元件於互補式金氧半導體製程之系統封裝研究★ 應用fT-倍頻電路架構於毫米波壓控振盪器與注入鎖定除頻器之研製
★ 應用傳輸線型變壓器於X/K–Ka/V頻段全積體整合之寬頻互補式金氧半導體功率放大器研製★ 應用於K / V 頻段低功耗混頻器之研製
★ 應用於K/V頻段之低功耗CMOS低雜訊放大器之研究★ 應用於5-GHz CMOS射頻前端電路之低電壓自偏壓式混頻器與高線性化功率放大器之研製
★ 應用於 K 頻段射頻接收機之寬頻低功耗 CMOS 低雜訊放大器之研製★ 應用磁耦合變壓器於K頻段之低功耗互補式金氧半導體壓控振盪器研製
★ 應用於K頻段之單向化全積體整合功率放大器與應用於V頻段之寬頻功率放大器研製★ 應用於C/X頻段全積體整合之互補式金氧半導體寬頻低功耗降頻器與寬頻功率混頻器之研製
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 本論文分為兩個部分,第一個部分為使用UMC 0.18µm CMOS製程研製2.5Gbps雷射二極體驅動電路,所設計之2.5Gbps雷射二極體驅動電路包括:2.5Gbps雷射二極體驅動電路、2.5Gb/s低電壓差動訊號雷射驅動電路;而在第二部分為使用tsmc 0.18µm CMOS製程研製2.4/5.2GHz雙頻射頻接收器,所設計之CMOS 射頻積體電路包括:2.4/5.2GHz雙頻低雜訊放大器、5.2GHz微混頻器。
在第一部分中,所設計之晶片皆採用高頻探針方式進行量測。其中2.5Gbps雷射二極體驅動電路量測結果如下:傳輸速率可達3Gbps、調變電流為34mA、增益約為10dB、輸出返射損耗小於-10dB、最大輸出波形約為0.85Vpp。而在2.5Gb/s低電壓差動訊號雷射驅動電路,其量測結果如下:傳輸速率可達5Gbps、調變電流為3mA、增益約為11.5dB、輸入返射損耗與輸出返射損耗皆小於-10dB、最大輸出波形約為0.1Vpp。
論文的第二部分中,2.4/5.2GHz雙頻低雜訊放大器晶片採用打線至玻璃纖維基板上進行量測,其結果如下:在2.4GHz增益約為5.03dB、輸入返射損耗約為5.68dB、輸出返射損耗約為10.93dB;而在5.2GHz增益約為4.27dB、輸入返射損耗約為5.32dB、輸出返射損耗約為25.41dB。而5.2GHz微混頻器其射頻頻率為5.2GHz、本地振盪頻率為5.19GHz,混頻後可得中頻頻率為10MHz,晶片量測採用高頻探針方式,其結果如下:當本地振盪端功率為-8dBm時,其轉換增益為4.95dB、輸入1dB壓縮點為-8dBm、輸出與輸入三階交互調變交錯點分別約為-5dBm及-3dBm、本地振盪端至射頻端間隔離度約為32.78dBm、本地振盪端至中頻端間隔離度約為26.27dBm、射頻端至中頻端間隔離度約為22.56dBm。
摘要(英) This thesis distribute into two parts. The first part of the thesis is the development of 2.5Gbps laser driver in a UMC 0.18µm CMOS process. The design of 2.5Gbps laser driver circuit includes a 2.5Gbps laser driver and a 2.5Gbps low voltage differential signals laser driver. The second part of the thesis is the development of 2.4/5.2GHz dual-band RF receiver in a tsmc 0.18µm CMOS process. The design of CMOS RF receiver circuit includes a 2.4/5.2GHz dual-band low noise amplifier and 5.2GHz micromixer.
The chip is on-chip measurement in first part. The 2.5Gbps laser driver exhibits a data rate of 3Gbps, modulation current of 34mA, gain of 10dB, output return loss smaller than -10dB and maximum output voltage swing of 0.85 Vpp. The 2.5Gbps low voltage differential signals laser driver exhibits a maximum data rate of 5Gbps, modulation current of 3mA, gain of 11.5dB, input and output return loss smaller than -10dB and maximum output voltage swing of 0.1 Vpp.
The 2.4/5.2GHz dual-band low noise amplifier is using the method of bonding die to printed circuit board. The 2.4/5.2GHz dual-band low noise amplifier exhibits a linear gain of 5.03dB, input return loss of 5.68dB and output return loss of 10.95dB at 2.4GHz, and a linear gain of 4.27dB, input return loss of 5.32dB and output return loss of 25.41dB at 5.2GHz. The 5.2GHz micromixer is using the method of on-chip. The 5.2GHz micromixer exhibits a conversion gain of 4.95dB, input 1dB compression point of -8dBm, output third-order inter-modulation intercept point of -5dBm, input third-order inter-modulation intercept point of -3dBm, local oscillator to radio frequency isolation of 32.78dB, local oscillator to intermediate frequency isolation of 26.27dB, radio frequency to intermediate frequency isolation of 22.56dB.
關鍵字(中) ★ 混頻器
★ 低雜訊放大器
★ 雷射驅動電路
關鍵字(英) ★ Mixer
★ Laser Driver
★ LNA
論文目次 第一章 導論 1
§1­1 研究動機 1
§1­2 論文綱要 2
第二章 2.5Gbps雷射二極體驅動電路 3
§2­1 光纖通訊之簡介 3
§2­2 光纖通訊系統 4
§2­3 雷射二極體之特性 6
§2­4 雷射二極體驅動電路之特性 11
§2-5 2.5Gbps雷射二極體驅動電路 13
§2-5-1 2.5Gbps雷射二極體驅動電路之電路架構 13
§2-5-2 2.5Gbps雷射二極體驅動電路之模擬與量測結果 14
§2-5-3 2.5Gbps雷射二極體驅動電路之討論 20
§2-6 2.5Gbps低電壓差動訊號雷射驅動電路 21
§2-6-1 2.5Gbps低電壓差動訊號雷射驅動電路之電路架構 22
§2-6-2 2.5Gbps低電壓差動訊號雷射驅動電路之模擬與量測結果 25
§2-6-3 2.5Gbps低電壓差動訊號雷射驅動電路之討論 33
第三章 CMOS RFIC射頻接收機 34
§3-1 簡介 34
§3-2 射頻前端CMOS RFIC接收機之架構 35
§3-3 2.4GHz與5.2GHz之雙頻帶低雜訊放大器 39
§3-3-1 雙頻帶低雜訊放大器的簡介與設計動機 39
§3-3-2 雙頻帶低雜訊放大器之電路架構 42
§3-3-3 雙頻帶低雜訊放大器之模擬與量測結果 45
§3-3-4 雙頻帶低雜訊放大器之討論 52
§3-4 使用CMOS所設計之降頻微混頻器 55
§3-4-1 混頻器之簡介與設計動機 55
§3-4-2 5.2GHz微混頻器之電路架構 65
§3-4-3 5.2GHz微混頻器之模擬與量測結果 70
§3-4-4 5.2GHz微混頻器之討論 79
第四章 結論及其未來研究方向 82
參考論文 84
參考文獻 [1] J. C. Palais, Fiber Optic Communications, Prentice Hall, 1998.
[2] H. Djahanshahi, F. Hannsen, C. A. T. Salama, “Gigabit-per-Second, ECL-Compatible I/O Interface in 0.35-um CMOS,” IEEE JSSC, vol.34, no.8, pp.1074-1083, Aug. 1999.
[3] Behzad Razavi, Deaign of Integrated Circuits for Optical Communications Technology, McGRAW Hill, 2003.
[4] High Speed Characteristics of VCSELs, J. Tatum, D. Smith, J. Guenter and R. Johnson, Honeywell’s MICRO SWITCH Division.
[5] “Interfacing Maxim Laser Driver with Laser Diodes,” Application Note of MAXIM, 2000.
[6] Rodney S. Tucker, “High Speed Modulation of Semiconductor Lasers,” Journal of Lightwave Technology, vol.LT-3 no.6, pp.1180-1192, Dec. 1985.
[7] F. Delpiano, R. Paoletti, P. Audagnotto and M. Puleo, “High Frequency Modeling and Characterization of High Performance DFB Laser Modules,” IEEE Transaction on Components, Packaging, and Manufacturing Technology-Part B, vol.17 no.3, pp.412-417, Aug. 1994.
[8] Jesper Riishoj, “2.5Gb/s Laser Driver GaAs IC,” Journal of Lightwave Technology, vol.11 no.7, pp.1139-1146, Jul. 1993.
[9] I-Chen Yao, Chung-Chen Kuo, Wei-Zen Chen, and Shyh-jye Jou, “1.25Gb/s Laser Driver,” 12th VLSI/CAD Symposium, 2001 Aug.
[10] Hans Martin Rein, “Multi-Gigabit Per-Second Silicon Bipolar IC’s for Future Optical-Fiber Transmission Systems,”IEEE JSSC, vol.23 no.3, pp.664-675, June 1988.
[11] Z.-G. Wang, M. Berroth, U. Nowotny, W. Gotzeina, P. Hofmann, A. Hulsmann, G. Kaufel, K. Kohler, B. Raynoe, and J.Schneider, “15Gbit/s Integrated Laser Diode Driver Using 0.3um Gate Length Quantum Well Transistor,” Electronics Letters, vol. 28, no.3, pp. 222-224, Jan. 1992.
[12] L. P. Chen, M. Y. Li, C. J. Chang-Hasnain, and K. Y. Lau, “ A low-power 1-Gb/s CMOS laser driver for a zero-bias modulated optical transmitter,” IEEE Photonics Technology Letter, vol. 9, no.7, pp.997-999, July 1997.
[13] Lee, K. et all, “A Jitter-tolerant 4.5Gb/s CMOS interconnect for Digital Display,” Proc. Of IEEE ISSCC 1998.
[14] Digital Display Interface specification revision 1.0 1999.
[15] Electrical Characteristics of Balanced Voltage Digital Interface Circuits (ANSI/TIA/EIA-422-B-94) (R2000) 01, May 1994.
[16] Electrical Characteristics of Generators and Receivers for Use in Balanced Digital Multipoint Systems (ANSI/TIA/EIA-485-A-98) 01, Mar 1998.
[17] “IEEE standard for Low-Voltage Differential Signals (LVDS) for Scalable Coherent Interface,” IEEE Std. 1596.3-1996. 31 July 1996.
[18] Peter X., et all, “A 500Mb/s. 20-Channel CMOS Laser Diode Array Driver for a Parallel Optical Bus,” Proc. Of IEEE ISSCC 1997.
[19] Bazes, M., et all, “Two Novel Fully Complementary Self-Biased CMOS Differential Amplifiers,” IEEE J. Solid-State Circuits, vol.26, pp.165-168,Feb.,1991.
[20] Jaeseo Lee, et all, “Design and Implementation of CMOS LVDS 2.5Gb/s Transmitter and 1.3Gb/s Receiver for Optical Interconnections,” IEEE Circuits and Systems, ISCAS 2001, vol.4, pp.702-705, May, 2001.
[21] “Maintaining Average Power and Extinction Ratio, Part1,” Application Note of MAXIM, 2002.
[22] N. Haralabidis and G. Halkias, “A CMOS Laser Driver with Independently Adjustable DC and Modulation Currents for Data Rates Up to 2.5Gb/s,” IEEE Circuits and Circuits and Systems, ISCAS 2000, vol.5, pp.425-428, May, 2000.
[23] 黃凡修,“10Gb/s光纖通訊系統傳送/接收電路模擬與實作,”碩士論文, 國立中央大學, 2003.
[24] 姚懿珍,“雷射二極體驅動電路,”碩士論文, 國立中央大學, 2001.
[25] Rehzad Razavi, RF Microelectronics, Prentice-Hall, Inc., 1998.
[26] D. K. Shaeffer and T. H. Lee, “A 1.5-V 1.5-GHz CMOS Low Noise Amplifier,” IEEE J. Solid-State Circuits, vol. 32, no. 5, pp. 745-759, May 1997.
[27] C. Y. Cha and S. G. Lee, “A Low Power, High Gain LNA Topology,” Int. Microwave and Millimeter Wave Technology conf., pp. 420-423, 2000.
[28] H. Samavati, H. R. Rategh and T. H. Lee, “A 5-GHz CMOS Wireless Lan Receiver Front End,” IEEE J. Solid-State Circuits, vol. 35, no. 5, pp. 765-772, May 2000.
[29] H. Hashemi and A. Hajimiri, “Concurrent Multiband Low-Noise Amplifiers-Theory, Design, and Applications,” IEEE Transactions on Microwave Theory and Techniques, vol. 50, no. 1, pp. 288-301, Jan 2002.
[30] Tommy K. K. Tsang and Mourad N. El-Gamal, “Dual-Band Sub-1V COMS LNA for 802.11A/B WLAN Applications,” ISCAS Circuits and System, vol. 1, pp. 217-220, May 2003.
[31] S. M. Yim and Kenneth K. O, “Demonstration of a Switched Resonator Concept in a Dual-Band Monolithic CMOS LC-Tuned VCO,” IEEE Custom Integrated Circuits Conference , pp. 205-208, May 2001.
[32] J. L. Tham et al., “A 2.7-V 900-MHz/1.9-GHz Dual-Band Transceiver IC for Digital Wireless Communication,” IEEE Journal of Solid-State Circuits, vol. 34, pp. 286-291, March 1999.
[33] K. L. Fong, “Dual-Band High-Linearity Variable-Gain Low-Noise Amplifiers for Wireless Communication,” ISSCC Digest of Technical Papers, pp. 224-225, 1999.
[34] S. Wu. and B. Razavi, “A 900-MHz/1.8-GHz CMOS Receiver for Dual-Band Applications,” IEEE Journal of Solid-State Circuits, vol. 33, pp. 2178-2185, December 1998.
[35] J. Ryynanen, K. Kivekas, J. Jussila, A. Parssinen and K. A. I. Halonen, “A dual-band RF front-end for WCDMA and GSM applications,” IEEE Journal of Solid-State Circuits, vol. 36, Issue: 8, pp. 1198-1204, Aug. 2001.
[36] Tadao Nakagawa, Munenari Kawashima, Hitoshi Hayashi and Katsuhiko Araki, “A 0.9-2.5 GHz wideband direct conversion receiver for multi-band applications,” IEEE GAS Digest, pp. 37-40, 2001.
[37] A. A. Abidi, “Direct-conversion Radio Transceivers for Digital Communications,” IEEE Journal of Solid-State Circuits, vol. 30, No. 12, pp. 1399-1410,December 1995.
[38] B. Gilbert, “The MICROMIXER: A highly linear variant of the Gilbert mixer using a bisymmetric Class-AB input stage.” IEEE J. Solid-State Circuits, Vol. 32, pp. 1412-1423, Sept. 1997.
[39] J. Durec and E. Main, “A linear class AB single-ended to differential transconverter suitable for RF circuit.” IEEE MTT-S Dig., pp. 1071-1074, 1996.
[40] C. C. Meng, S. S. Lu, M. H. Chiang and H. C. Chen, “DC to 8 GHz 11 dB gain Gilbert micromixer using GaInP/GaAs HBT technology.” Electronics Letters, Vol. 39 Issue: 8, April 2003.
[41] C. C. Meng, S. K. Xu,; T. H. Wu,; M. H. Chao and G. W. Huang, “A high isolation CMFB Downconversion Micromixer using 0.18-um deep n-well CMOS technology.” IEEE Radio Frequency Integrated Circuits (RFIC) Symposium, Vol.8-10, pp. 619-622, June 2003.
[42] C. Y. Wang, S. S. Lu and C. C. Meng, “Wideband impedance matched GaInP/GaAs HBT Gilbert micromixer with 12 dB gain.” ASIC, Proceedings, IEEE Asia-Pacific Conference on, Vol. 6-8, pp. 323-326, Aug. 2002.
[43] 黃秋皇,“應用於IEEE 802.11b/g無線區域網路之2.4GHz CMOS射頻接收機,”碩士論文, 國立成功大學, 2003.
指導教授 邱煥凱(Hwann-Kaeo Chiou) 審核日期 2004-7-7
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明