博碩士論文 105328007 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:63 、訪客IP:3.22.41.168
姓名 蔣建勇(JIAN-YONG JIANG)  查詢紙本館藏   畢業系所 能源工程研究所
論文名稱 以奈米銅催化輔助控制多孔石墨烯之孔隙結構及其於超級電容之研究
(Nano-catalyst assisted pore-structure tailoring of holey-graphene for high performance energy storage)
相關論文
★ 捲對捲乾轉印方法於製作高效能石墨烯透明導電膜之研究★ 利用氟素高分子摻雜於提升石墨烯導電膜的效能 與穩定性之研究
★ 以石墨烯混成陶瓷粉末於製作高導熱及高電阻之聚亞醯胺薄膜的研究★ 研究超潔淨石墨烯之場效電晶體 於提升基因感測器之效能
★ 利用氟化自組裝膜輔助轉印石墨烯薄膜及其於場效電晶體特性之研究★ 多孔石墨烯邊界態之氮改質於超級電容的效能研究
★ 石墨烯場效應電晶體應用於DNA生醫感測晶片之元件整合和效能評估的研究★ 添加氟化石墨烯於奈米高分子複合材料以增強防 腐性能
★ 石墨烯功能性改質於鋰離子電池負極材料 之研究★ 紫外光輻照於輔助轉印高品質石墨烯之研究
★ 氟化石墨烯複合結構於鋰離子電池的人工固態電解質界面膜之研究★ 超高附著力之氟化石墨烯薄膜於固態磨潤之研究
★ 真空壓印於二維材料轉印製程之研究★ 氟化石墨烯複合結構在鋰金屬電池中的雙功能陽極之機制探討
★ 氟化石墨烯複合材料塗層於多功能披覆之研究★ 三維結構之微孔石墨烯於超級電容器之應用與研究
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   至系統瀏覽論文 ( 永不開放)
摘要(中) 近年來奈米多孔石墨烯在許多重要技術領域中實現了廣泛的應用潛力,而在科學界以及工業界引起不小的關注,對於多功能性的多孔石墨烯來說,要能完全控制其整體孔洞結構和密度。對於高質量負載的電極來說,想要快速地儲存和傳輸能量,離子能有效地在電極材料內移動以及量身定製的多孔性是相當重要的。

本研究呈現一個獨特、簡單且低成本的技術,即是以奈米銅顆粒作為催化劑,由銅顆粒來決定所合成之多孔石墨烯的孔洞尺寸以及形狀,從而產生高孔洞密度(103/µm)。以電化學結果來看,電極材料於高質量負載時,多孔石墨烯的比電容值、能量以及功率密度皆比還原電化學剝離石墨烯(Reduced electorchemical exfoliation graphene, rECG)高出一個數量級,同時於循環15000次之後依然保有高於99%的電容維持率。在電極材料負載量15 mg/cm2時,多孔石墨烯的擴散係數比rECG高出約1.5倍,由於多孔的結構提供離子一個不曲折的貫通傳輸路徑,使多孔石墨烯具有較高之電化學表現。

此外,多孔石墨烯的振實密度(0.72 g/cm3)比rECG(0.0064 g/cm3)高出約兩個數量級,表示多孔石墨烯較不易因回疊而損耗電容量以及具有較高體積電容,本研究證實能夠控制多孔石墨烯的孔洞結構,使電極材料在高負載量時仍能確保離子傳輸的效率,同時也了解到孔洞結構的重要性,並為可控性多孔石墨烯為基礎的技術開啟新的應用道路。
摘要(英) Nanoporous holey-graphene (HG) recently, made a sensation in scientific and industrial community because of its just actualized versatile potentials in several technologically important fields. The versatility of HG demands a complete control over its entire pore-architecture and density. Particularly, for ultra-high storage and rapid delivery of energy, along with well-tailored porosity, facile through-thickness ion-transport in a high-mass-loaded electrode is immensely important. Here we report, a unique, simple and cost effective copper nanocatalyst assisted predefined porosity tailoring of HG leading to extraordinary high pore-density exceeding 1103 per µm-2. Synchronizing the porosity with high-mass loading results in excellent supercapacitor performance of at least an order higher areal capacitance (~100% retention up to 15000 cycles), energy and power densities along with 90% retainment of gravimetric capacitance (as a function of mass loadings) than rECG. A rapid increase (1.5 fold higher than rECG) of diffusion coefficient (4.0102 fold) as a function of mass loading suggest excellent non-tortuous ion-transport in 15 mg cm-2 HG electrode. Further, two order higher tap-density of HG (0.72 g cm-3) as compared to rECG (0.0064 g cm-3) suggests lower restacking and higher volumetric capacitance of HG. As far our knowledge, this is the first report of complete tailoring of HG porosity blended to facile ion-transport in a high mass loaded electrode and opens new avenue for futuristic HG based technologies wherein pore architecture is significantly important.
關鍵字(中) ★ 多孔石墨烯
★ 銅
★ 奈米催化
★ 奈米孔洞
★ 超級電容
關鍵字(英) ★ holey-graphene
★ copper
★ nano-catalyst
★ nanopores
★ supercapcitor
論文目次 摘要 i
Abstract ii
誌謝 iii
總目錄 iv
圖目錄 vi
表目錄 ix
第一章 緒論 1
第二章 研究背景與文獻回顧 4
2-1 物理性方式製造多孔石墨烯 4
2-2 化學性方式製造多孔石墨烯 10
2-3 奈米多孔石墨烯之應用 16
2-4 研究動機 28
第三章 實驗方法與步驟 30
3-1電化學剝離石墨烯之製備 30
3-2多孔石墨烯之製備 31
3-2-1銅/氧化銅-石墨烯(Cu/CuxO-ECG)複合物粉末製作: 31
3-2-2多孔石墨烯的形成: 32
3-3-3銅粒子移除: 35
3-3材料特性鑑定 37
3-3-1 形貌之分析 37
3-3-2 結晶結構分析 37
3-3-3 表面元素成分分析 37
3-3-4 孔洞尺寸分佈 38
3-4電化學量測之實驗流程 39
3-4-1電極製備 39
3-4-2循環伏安法 (cyclic voltammetry, CV) 39
3-4-3計時電位法 (chronopotentiometry, CP) 40
3-4-4交流阻抗分析(electrochemical impedance spectroscopy, EIS) 40
3-5樣品定義 41
第四章 結果與討論 42
4-1材料特性分析 42
4-1-1 表面形貌觀察─ u-HG系列 42
4-1-2 表面形貌觀察─ HG-HT系列 48
4-1-3 表面形貌觀察─ h-HG 50
4-1-4 XPS分析結果與討論 52
4-1-5 XRD分析結果與討論 55
4-1-6 Raman分析結果與討論 56
4-1-7 BET分析結果與討論 58
4-2電化學特性分析 60
4-2-1 空白鎳網測試 60
4-2-2 討論無孔洞石墨烯之電化學特性 61
4-2-3 討論多孔石墨烯之電化學特性 65
4-2-4 比較多孔/無孔石墨烯之電化學特性 70
4-2-5 電化學特性綜合比較 74
第五章 結論 77
參考文獻 1. Lloyd-Hughes, J. and T.-I. Jeon, A Review of the Terahertz Conductivity of Bulk and Nano-Materials. Journal of Infrared, Millimeter, and Terahertz Waves, 2012. 33(9): p. 871-925.
2. Peng, L., et al., Holey 2D Nanomaterials for Electrochemical Energy Storage. Advanced Energy Materials, 2018. 8(9): p. 1702179.
3. Ishigami, M., et al., Atomic structure of graphene on SiO2. Nano Lett, 2007. 7(6): p. 1643-8.
4. Berger, C., et al., Ultrathin Epitaxial Graphite: 2D Electron Gas Properties and a Route toward Graphene-based Nanoelectronics. The Journal of Physical Chemistry B, 2004. 108(52): p. 19912-19916.
5. Muñoz, R. and C. Gómez-Aleixandre, Review of CVD Synthesis of Graphene. Chemical Vapor Deposition, 2013. 19(10-11-12): p. 297-322.
6. Fischbein, M.D. and M. Drndić, Electron beam nanosculpting of suspended graphene sheets. Applied Physics Letters, 2008. 93(11).
7. Celebi, K., et al., Ultimate permeation across atomically thin porous graphene. Science, 2014. 344(6181): p. 289-92.
8. Koenig, S.P., et al., Selective molecular sieving through porous graphene. Nat Nanotechnol, 2012. 7(11): p. 728-32.
9. Surwade, S.P., et al., Water desalination using nanoporous single-layer graphene. Nat Nanotechnol, 2015. 10(5): p. 459-64.
10. Kuan, A.T., et al., Electrical pulse fabrication of graphene nanopores in electrolyte solution. Appl Phys Lett, 2015. 106(20): p. 203109.
11. O′Hern, S.C., et al., Selective ionic transport through tunable subnanometer pores in single-layer graphene membranes. Nano Lett, 2014. 14(3): p. 1234-41.
12. Zhang, L.L., et al., Highly conductive and porous activated reduced graphene oxide films for high-power supercapacitors. Nano Lett, 2012. 12(4): p. 1806-12.
13. Zhao, X., et al., Flexible holey graphene paper electrodes with enhanced rate capability for energy storage applications. ACS Nano, 2011. 5(11): p. 8739-49.
14. Chang, B., et al., 2D graphene-like hierarchically porous carbon nanosheets from a nano-MgO template and ZnCl2activation: morphology, porosity and supercapacitance performance. RSC Adv., 2016. 6(75): p. 71360-71369.
15. Sun, X., et al., Activation of graphene aerogel with phosphoric acid for enhanced electrocapacitive performance. Carbon, 2015. 92: p. 1-10.
16. Wang, S., et al., Room-temperature synthesis of soluble carbon nanotubes by the sonication of graphene oxide nanosheets. J Am Chem Soc, 2009. 131(46): p. 16832-7.
17. Xu, Y., et al., Self-assembled graphene hydrogel via a one-step hydrothermal process. ACS Nano, 2010. 4(7): p. 4324-30.
18. Xu, Y., et al., Holey graphene frameworks for highly efficient capacitive energy storage. Nat Commun, 2014. 5: p. 4554.
19. Wang, H., et al., Three-dimensional macroporous graphene architectures as high performance electrodes for capacitive deionization. Journal of Materials Chemistry A, 2013. 1(38).
20. Nakada, K., et al., Edge state in graphene ribbons: Nanometer size effect and edge shape dependence. Physical Review B, 1996. 54(24): p. 17954-17961.
21. Bai, J., et al., Graphene nanomesh. Nat Nanotechnol, 2010. 5(3): p. 190-4.
22. Liang, X., et al., Formation of bandgap and subbands in graphene nanomeshes with sub-10 nm ribbon width fabricated via nanoimprint lithography. Nano Lett, 2010. 10(7): p. 2454-60.
23. Venkatesan, B.M. and R. Bashir, Nanopore sensors for nucleic acid analysis. Nat Nanotechnol, 2011. 6(10): p. 615-24.
24. Nelson, T., B. Zhang, and O.V. Prezhdo, Detection of nucleic acids with graphene nanopores: ab initio characterization of a novel sequencing device. Nano Lett, 2010. 10(9): p. 3237-42.
25. You, Y., et al., Graphene and graphene oxide for desalination. Nanoscale, 2016. 8(1): p. 117-9.
26. Cohen-Tanugi, D. and J.C. Grossman, Water desalination across nanoporous graphene. Nano Lett, 2012. 12(7): p. 3602-8.
27. Simon, P. and Y. Gogotsi, Materials for electrochemical capacitors. Nat Mater, 2008. 7(11): p. 845-54.
28. Chen, T. and L. Dai, Carbon nanomaterials for high-performance supercapacitors. Materials Today, 2013. 16(7-8): p. 272-280.
29. Huang, J., K. Wang, and Z. Wei, Conducting polymernanowire arrays with enhanced electrochemical performance. J. Mater. Chem., 2010. 20(6): p. 1117-1121.
30. Wang, K., et al., High-performance two-ply yarn supercapacitors based on carbon nanotubes and polyaniline nanowire arrays. Adv Mater, 2013. 25(10): p. 1494-8.
31. Wang, K., et al., Flexible supercapacitors based on cloth-supported electrodes of conducting polymer nanowire array/SWCNT composites. Journal of Materials Chemistry, 2011. 21(41).
32. Zhang, H., et al., Electrochemically assembling of polythiophene film in ionic liquids (ILs) microemulsions and its application in an electrochemical capacitor. Electrochimica Acta, 2014. 120: p. 122-127.
33. Bai, X., et al., 3D flowerlike poly(3,4-ethylenedioxythiophene) for high electrochemical capacitive energy storage. Electrochimica Acta, 2013. 106: p. 219-225.
34. Balan, B.K., et al., Carbon nanofiber–RuO2–poly(benzimidazole) ternary hybrids for improved supercapacitor performance. RSC Advances, 2013. 3(7).

35. Zhang, X., et al., Hydrothermal-Reduction Synthesis of Manganese Oxide Nanomaterials for Electrochemical Supercapacitors. Journal of Nanoscience and Nanotechnology, 2010. 10(11): p. 7711-7714.
36. Zhang, X., et al., Comparative performance of birnessite-type MnO2 nanoplates and octahedral molecular sieve (OMS-5) nanobelts of manganese dioxide as electrode materials for supercapacitor application. Electrochimica Acta, 2014. 132: p. 315-322.
37. Feng, L., et al., Recent progress in nickel based materials for high performance pseudocapacitor electrodes. Journal of Power Sources, 2014. 267: p. 430-444.
38. Yuan, C., et al., Template-engaged synthesis of uniform mesoporous hollow NiCo2O4 sub-microspheres towards high-performance electrochemical capacitors. RSC Advances, 2013. 3(40).
39. Ambade, R.B., et al., Polythiophene infiltrated TiO2 nanotubes as high-performance supercapacitor electrodes. Chem Commun (Camb), 2013. 49(23): p. 2308-10.
40. Stoller, M.D., et al., Graphene-based ultracapacitors. Nano Lett, 2008. 8(10): p. 3498-502.
41. Zhu, Y., et al., Carbon-based supercapacitors produced by activation of graphene. Science, 2011. 332(6037): p. 1537-41.
42. Zhou, D., et al., A general and scalable synthesis approach to porous graphene. Nat Commun, 2014. 5: p. 4716.
43. Zhang, Y., et al., Anisotropic Hydrogen Etching of Chemical Vapor Deposited Graphene. ACS Nano, 2012. 6(1): p. 126-132.
44. Hsieh, C.-T., et al., Electrochemical Capacitors Based on Graphene Oxide Sheets Using Different Aqueous Electrolytes. The Journal of Physical Chemistry C, 2011. 115(25): p. 12367-12374.
45. Zhang, M., et al., Improving the electrochemical performances of active carbon-based supercapacitors through the combination of introducing functional groups and using redox additive electrolyte. Journal of Saudi Chemical Society, 2018. 22(8): p. 908-918.
46. Sari, N.P., et al., Controlled multimodal hierarchically porous electrode self-assembly of electrochemically exfoliated graphene for fully solid-state flexible supercapacitor. Phys Chem Chem Phys, 2017. 19(45): p. 30381-30392.
47. Bai, Y., et al., Formation process of holey graphene and its assembled binder-free film electrode with high volumetric capacitance. Electrochimica Acta, 2016. 187: p. 543-551.
48. Han, X., et al., Scalable holey graphene synthesis and dense electrode fabrication toward high-performance ultracapacitors. ACS Nano, 2014. 8(8): p. 8255-65.
49. Hu, X., et al., A facile synthesis of reduced holey graphene oxide for supercapacitors. Chem Commun (Camb), 2017. 53(99): p. 13225-13228.



50. Zoromba, M.S., et al., Electrochemical Activation of Graphene at Low Temperature: The Synthesis of Three-Dimensional Nanoarchitectures for High Performance Supercapacitors and Capacitive Deionization. ACS Sustainable Chemistry & Engineering, 2017. 5(6): p. 4573-4581.
指導教授 蘇清源(Ching-Yuan Su) 審核日期 2019-6-4
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明