博碩士論文 106328009 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:29 、訪客IP:3.135.183.200
姓名 周晏如(Yen-Ju Chou)  查詢紙本館藏   畢業系所 能源工程研究所
論文名稱 水平式腔體氮化鋁MOCVD製程中薄膜碳濃度與傳輸現象之數值模擬分析
(Numerical analysis of carbon incorporation into AlN films grown by MOCVD method in horizontal reactor)
相關論文
★ 發光二極體電極設計與電流分佈模擬分析★ 外加水平式磁場柴氏長晶法生長矽單晶之熱流場數值模擬研究
★ 外加cusp磁場柴氏法生長單晶矽之熱流場及氧雜質傳輸數值分析★ MOCVD垂直式腔體中氮化鎵薄膜生長之模擬分析
★ 考量氣體分子 吸附性質之 MOCVD垂直反應腔體模擬分析★ Phosphor Packaging Design of white LED with Optical-Thermal-Electrical Coupling
★ 水平式MOCVD腔體中使用氣體脈衝方法生長氮化鋁薄膜之數值模擬與分析★ 外加Cusp磁場下柴氏法生長單晶矽之不同晶堝轉影響熱流場及氧傳輸數值分析
★ 水解二乙基鋅於近耦合噴淋式反對稱腔體 之MOCVD模擬設計分析★ MOCVD水平式腔體中氮化鎵薄膜製程碳濃度之模擬與傳輸現象分析
★ MOCVD 行星式腔體之模型建立與傳輸現象分析★ 柴氏法生長6~8吋矽單晶之高溫梯爐體與製程設計模擬
★ 300mm矽晶圓片於平坦度10奈米以下磊晶製程之數值模擬分析★ 以陽極處理法生長二氧化鈦奈米管於玻璃基板上之研究
★ 二段陽極處理法應用於鈦薄膜成長之研究★ 交流電發光二極體之接面溫度與熱阻量測研究
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 隨著科技的演進,電子產品相關應用大幅普及至各個產業,半導體元件材料利用電導率變化來處理資訊。三五族半導體是一種具有寬能隙且具有高導熱性之元件,為半導體材料發展重心之一。於薄膜製程中,金屬有機化學氣相沉積(Metal Organic Chemical Vapor deposition , MOCVD)隨著前驅物的更換,可生長均勻性良好的各種半導體金屬化合物。本研究以三甲基鋁(TMAl)與氨氣(NH3)作為前驅物進行AlN薄膜生長,為了達到元件電性的需求,須調整氮化鋁薄膜的電阻值,薄膜中碳濃度過高會導致電阻值提升,因此控制薄膜中碳含量至關重要。
當生長氮化鋁薄膜(AlN films)時,眾多文獻均探討實驗參數控制寄生反應(Parasitic reactions) 過程中產生的奈米微粒(Particles),在過去文獻中較少有探討在生長AlN薄膜含碳相關研究,因此本研究建立包含TMAl、NH3、載氣H2反應式以及包含碳氣相反應的數值模型,探討在不同溫度、壓力、反應前驅物流量及載氣流量…等各項製程參數對於薄膜碳濃度的影響。
研究結果顯示,當提升溫度時,導致熱裂解反應速率加快,產生更多的MMAl及甲基,使薄膜碳濃度上升;當提高腔體壓力時,甲基解吸反應會加快,使得主要吸附物種從甲基變為乙烯,使得薄膜碳濃度上升;當增加氫氣流量時,氫氣可以抑制氨氣解離,並降低氣相反應中活性N前體的濃度,引起薄膜更多的N空位使得碳優先佔據;當增加NH3流量時,甲基會形成不吸附的甲烷,使腔體內部主要碳吸附物種減少,因此薄膜碳濃度下降;當提升TMAl流量時,有更多的反應氣體能夠熱裂解出甲基分子,使得含碳吸附物種有更高的濃度,因此薄膜碳濃度上升。
摘要(英) With the evolution of technology, electronic product-related applications have spread to various industries. Semiconductor component materials utilize conductivity changes to process information. The tri-five semiconductor is an element with a wide energy gap and high thermal conductivity, and is one of the focuses of semiconductor materials. In the thin film process, Metal Organic Chemical Vapor Deposition (MOCVD) can grow various semiconductor metal compounds with good uniformity with the replacement of the precursor. In this study, TMAl and NH3 were used as precursors for AlN film growth. In order to meet the electrical requirements of the device, the resistance value of the aluminum nitride film must be adjusted. If the carbon concentration in the film is too high, the resistance value increases. It is vital that controlling the carbon content in the film.
When growing AlN films, many literatures have explored the use of experimental parameters to control the generation of nanoparticles in the parasitic reactions. In the past literature, there have been few studies on the carbon content of grown AlN films. In this study, a numerical model including Trimethyl Aluminum (TMAl), Ammonia (NH3), carrier gas Hydrogen (H2)reaction and carbon gas phase reaction was established to investigate the effects of various process parameters such as temperature, pressure, reaction precursor flow rate and carrier gas flow rate on the carbon concentration of the film.
The results show that when the temperature is raised, the rate of thermal cracking reaction is accelerated, and more MMAl and methane are generated. Thus, the carbon concentration of the film increases. When the pressure of the cavity is increased, the methane desorption reaction will be accelerated, causing the main adsorbed species to change from methane to ethene , causing the film carbon concentration to rise. When the Hydrogen flow rate, Hydrogen can inhibit the NH3 dissociation, and reduce the concentration of active N precursor in the gas phase reaction, causing more N vacancies in the film to make carbon preferentially occupy. When the NH3 flow rate is increased, the methyl group forms a non-adsorbed methane , the main carbon adsorption species inside the cavity is reduced, so the film carbon concentration decreases. When the TMAl flow rate is increased, more reaction gases can thermally crack the methyl molecules, making the carbon-containing adsorption species higher The concentration of the film thus increases the carbon concentration of the film.
關鍵字(中) ★ 金屬有機化學氣相沉積
★ 氮化鋁
★ 碳
關鍵字(英)
論文目次 摘要 V
Abstract VI
致謝 VIII
目錄 IX
圖目錄 XII
表目錄 XV
符號說明 XVI
第一章 緒論 1
1-1 研究背景 1
1-2 MOCVD薄膜沉積過程 2
1-2-1 氣相反應過程 2
1-2-2 表面吸附過程 3
1-2-3 薄膜表面成長過程 4
1-3 MOCVD反應腔體中的傳輸現象 5
1-3-1 水平式腔體 5
1-3-2 垂直式腔體 6
1-4 文獻回顧 7
1-5 研究動機與目的 10
第二章 研究方法 23
2-1 數學模型 23
2-1-1 物理系統與基本假設 23
2-1-2 統御方程式 24
2-1-3 邊界條件 25
2-2 混合氣體物理參數 26
2-3 化學反應方程式 27
2-4 化學反應路徑 28
2-4-1 氮化鋁氣相反應途徑 28
2-4-2 碳氣相反應途徑 29
2-5 表面化學計算 30
2-5-1 表面碰撞原理 (Collision Theory) 30
2-5-2 吸附反應 (Adsorption reaction) 30
2-6 薄膜沉積速率 32
2-7 薄膜中含碳濃度計算 32
2-8 無因次參數 33
第三章 數值方法 40
3-1 數值求解 40
3-2 網格配置測試 40
3-3 收斂公差測試 40
第四章 結果與討論 43
4-1 溫度對AlN薄膜碳濃度之影響及模型驗證 43
4-2 腔體內部流速 44
4-3 碳氣相之傳輸現象 44
4-4 壓力對AlN薄膜碳濃度之影響 44
4-5 流量對AlN薄膜碳濃度之影響 45
4-5-1 H2流量對薄膜碳濃度之影響 45
4-5-2 NH3流量對薄膜碳濃度之影響 46
4-5-3 TMAl流量對薄膜碳濃度之影響 46
第五章 結論與未來研究方向 57
5-1 結論 57
5-2 未來研究方向 58
參考文獻 [1] Theodoros G. Mihopoulos, Vijay Gupta ,and Klavs F. Jensen, “A reaction-transport model for AlGaN MOVPE growth”, Journal of Crystal Growth, Vol 195, pp. 733-739, 1998.
[2] Takeshi Uchida, Kazuhide Kusakabe, Kazuhiro Ohkawa, “Influence of polymer formation on metalorganic vapor-phase epitaxial growth of AlN”, Journal of Crystal Growth, Vol 304, pp. 133-140, February 2007.
[3] A.V. Lobanova, K. M. Mazaev, R. A. Talalaev, M. Leys, S. Boeykens, K. Cheng, & S. Degroote, “Effect of V/III ratio in AlN and AlGaN MOVPE”. Journal of crystal growth, Vol 287(2), pp. 601-604, 2006.
[4] D.G. Zhao, J. J. Zhu , D. S. Jiang , H. Yang , J. W. Liang , X. Y. Li , & H. M. Gong. “Parasitic reaction and its effect on the growth rate of AlN by metalorganic chemical vapor deposition”. Journal of Crystal Growth , Vol 289(1), pp. 72-75, 2006.
[5] M. Dauelsberg , D. Brien , H. Rauf, F. Reiher , J. Baumgartl , O. Häberlen, & R. A. Talalaev.“On mechanisms governing AlN and AlGaN growth rate and composition in large substrate size planetary MOVPE reactors”. Journal of Crystal Growth, Vol 393, pp. 103-107, 2014.
[6] M. L. Nakarmi , B. Cai , J. Y. Lin , & H. X. Jiang. “Three‐step growth method for high quality AlN epilayers”. physica status solidi (a), Vol 209(1), pp. 126-129, 2012.
[7] L. W. Sang , Z. X. Qin , H. Fang , T. Dai , Z. J. Yang , B. Shen , & D. P. Yu. “Reduction in threading dislocation densities in AlN epilayer by introducing a pulsed atomic-layer epitaxial buffer layer”. Applied Physics Letters, Vol 93(12), pp. 122104, 2008.
[8] T. Y. Wang , J. H. Liang , G. W. Fu , & D. S. Wuu. “Defect annihilation mechanism of AlN buffer structures with alternating high and low V/III ratios grown by MOCVD”. CrystEngComm, Vol 18(47), pp. 9152-9159, 2016.
[9] Ö. Danielsson , X. Li , L. Ojamäe , E. Janzén , H. Pedersen , & U. Forsberg. “A model for carbon incorporation from trimethyl gallium in chemical vapor deposition of gallium nitride”. Journal of Materials Chemistry C, Vol 4(4), pp. 863-871, 2016.
[10] J. Leitner , J. Stejskal , & Z. Sofer.“Thermodynamic aspects of carbon incorporation into AlN epitaxial layers grown by MOVPE”. physica status solidi (c), Vol 2(7), pp. 2504-2507, 2005.
[11] 鄒畇辰, "水平式MOCVD腔體中使用氣體脈衝方法生長氮化鋁薄膜之數值模擬與分析", 國立中央大學2017.
[12] 葉政緯, "MOCVD水平式腔體中氮化鎵薄膜製程碳濃度之模擬與傳輸現象分析", 國立中央大學2018.
[13] 左然和李暉, "MOCVD反應器的最佳運輸過程及其優化設計",半導體學
報, 29(6),1164-1171頁, 2008。
[14] Keunjoo Kim and Sam Kyu Noh,“Reactor design rules for GaN epitaxial layer growths on sapphire in metal–organic chemical vapour deposition”, Vol 15, pp. 868–874, May 2000.
[15] M. Dauelsberg, E. J. Thrush, B. Schineller, and J. Kaeppeler, "Chapter 4 - Technology of MOVPE Production Tools," in Optoelectronic Devices: III Nitrides, M. R. Henini, Ed., ed Oxford: Elsevier, pp. 39-68, 2005.
指導教授 陳志臣 審核日期 2019-8-12
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明