博碩士論文 106523009 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:13 、訪客IP:3.133.126.95
姓名 呂昂運(Ang-Yun Lu)  查詢紙本館藏   畢業系所 通訊工程學系
論文名稱 基於奇異值分解之有限角度相位偏移器混合預編碼設計應用於毫米波多輸入多輸出系統
(Hybrid Precoder and Combiner Design based on SVD with Finite Resolution Phase Shifters in Millimeter Wave MIMO Systems)
相關論文
★ 利用手持式手機工具優化行動網路系統於特殊型活動環境★ 穿戴裝置動態軌跡曲線演算法設計
★ 石英諧振器之電極面設計對振盪頻率擾動之溫度相依性研究★ 股票開盤價漲跌預測
★ 感知無線電異質網路下以不完美頻譜偵測進行資源配置之探討★ 大數量且有限天線之多輸入多輸出系統效能分析
★ 具有元學習分類權重轉移網路生成遮罩於少樣本圖像分割技術★ 具有注意力機制之隱式表示於影像重建 三維人體模型
★ 使用對抗式圖形神經網路之物件偵測張榮★ 基於弱監督式學習可變形模型之三維人臉重建
★ 以非監督式表徵分離學習之邊緣運算裝置低延遲樂曲中人聲轉換架構★ 基於序列至序列模型之 FMCW雷達估計人體姿勢
★ 基於多層次注意力機制之單目相機語意場景補全技術★ 應用於3GPP WCDMA-FDD上傳鏈路系統的遞迴最小平方波束合成犛耙式接收機
★ 調適性遠時程瑞雷衰退通道預測演算法設計與性能比較★ 智慧型天線之複合式到達方位-時間延遲估測演算法及Geo-location應用
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 毫米波通訊及多輸入多輸出對未來通訊系統而言是非常重要的技術。在傳統的數位預編碼架構中,每根天線需要一個專用的射頻鏈,對於多輸入多輸出環境下,天線數量將會非常龐大,會造成射頻鏈的大量使用導致非常高的功率消耗。混合預編碼正是用來改善傳統數位預編碼所造成的高功率消耗問題。混合預編碼的動機為將數位預編碼及類比預編碼兩者做結合,利用類比預編碼的架構,一個射頻鏈經由相位偏移器連結到每根天線,以此來降低射頻鏈的數量。必須注意的是,由於相位偏移器的使用,類比預編碼只能有相位上的變化,所以設計上須滿足此條件。故混合預編碼須分為數位預編碼矩陣及類比預編碼矩陣來設計以達到最大化頻譜效益,並且滿足所有設計上的限制。
在這篇論文中,我們考量一個射頻鏈連接至所有相位偏移器之混合預編碼架構,並使用有限角度的相位偏移器,也就是將角度量化成幾個固定角度。首先我們從最佳的預編碼矩陣中獲得它的相位,其中最佳的預編碼矩陣可由通道奇異值分解後得到。接著我們將這些角度進行量化,量化後的角度便可拿來設計類比預編碼矩陣。類比預編碼矩陣設計好之後,數位預編碼矩陣便可用最小平方法求解獲得。在設計時主要需考量兩個方面:頻譜效益以及複雜度。雖然設計上以如何最大化頻譜效益為主,但必須同時考量到複雜度過高的問題。
模擬結果顯示,我們和一個著名的正交匹配追蹤演算法做比較,我們使用的設計方法不僅提升了頻譜效益,並且還降低了運算複雜度,甚至我們還運用了量化後的角度,而正交匹配追蹤並未使用量化角度。
摘要(英) Millimeter wave (mmWave) communication and multiple-input multiple-output (MIMO) are two important technologies for future communication system. In traditional digital precoding architecture, each antenna needs one distinct RF chain, this may cost high power consumption. Hybrid precoding and combining have been used to improve traditional full digital precoding in mmWave MIMO system. In this paper, we consider a fully-connected hybrid precoding architecture with finite resolution phase shifters. We first obtain the phase of optimal precoder and combiner, which can be calculated by singular value decomposition (SVD) of channel, then use these phases to construct the RF precoder and combiner. After RF precoder and combiner are designed, digital precoder and combiner can be calculated by least square solution. The results show that the proposed algorithm improves the capacity and reduces the complexity compared to existing orthogonal matching pursuit (OMP) algorithm.
關鍵字(中) ★ 多輸入多輸出
★ 毫米波
★ 混合預編碼
關鍵字(英) ★ multiple-input multiple-output
★ millimeter wave
★ hybrid precoding
論文目次 論文摘要...............................................i
Abstract..............................................iii
Contents..............................................iv
List of Figures.......................................vi
List of Tables........................................vii
Chapter1. Introduction...............................-1-
1.1. An Overview of Hybrid Precoding...............-1-
1.2. Precoding Technique...........................-3-
1.3. Architecture of Digital and Analog Precoding..-4-
1.4. Organization..................................-5-
1.5. Contribution..................................-5-
1.6. Abbreviations.................................-5-
1.7. Notation......................................-6-
Chapter2. System Model and Problem Formulation.......-7-
2.1. mmWave Signal Model...........................-7-
2.2. System Model.................................-11-
2.3. Problem Formulation..........................-13-
Chapter3. Hybrid Precoder and Combiner Design.......-16-
3.1. Review of Orthogonal Matching Pursuit (OMP)..-16-
3.2. Proposed Hybrid Precoder and Combiner Design
Method.......................................-18-
Chapter4. Complexity Analysis.......................-22-
Chapter5. Simulation Results........................-25-
Chapter6. Conclusion................................-31-
Reference............................................-32-
參考文獻 [1] Z. Pi and F. Khan, “An introduction to millimeter-wave mobile broadband systems,” IEEE Commun. Mag., vol. 49, no. 6, pp. 101-107, 2011.
[2] R. C. Daniels and R. W. Heath, “60 GHz wireless communications: Emerging requirements and design recommendations,” in IEEE Vehicular Technology Magazine, vol. 2, no. 3, pp. 41-50, 2007.
[3] X. Zhang, A. Molisch, and S.-Y. Kung, “Variable-phase-shift-based RF-baseband codesign for MIMO antenna selection,” IEEE Transactions on Signal Processing, vol. 53, no. 11, pp. 4091-4103, Nov. 2005.
[4] O. El Ayach, R. W. Heath, Jr., S. Abu-Surra, S. Rajagopal, and Z. Pi, “The capacity optimality of beam steering in large millimeter wave MIMO systems,” in Proc. IEEE Int. Workshop Signal Process. Adv. Wireless Commun., Jun. 2012, pp. 100-104.
[5] O. El Ayach, R. W. Heath, Jr., S. Abu-Surra, S. Rajagopal, and Z. Pi, “Low complexity precoding for large millimeter wave MIMO systems,” in Proc. 2012 IEEE International Conf. Commun., pp. 3724-3729.
[6] F. Khan, Z. Pi, S. Rajagopal, "Millimeter-wave mobile broadband with large scale spatial processing for 5G mobile communication", Proc. 50th Annu. Allerton Conf. Commun. Control Comput., pp. 1517-1523, Oct. 2012.
[7] A. Alkhateeb, O. El Ayach, G. Leus, and R. W. Heath, Jr.,“Hybrid precoding for millimeter wave cellular systems with partial channel knowledge,” in Proc. Inf. Theory Appl. Workshop, Feb. 2013, pp. 1-5.
[8] O. El Ayach, S. Rajagopal, S. Abu-Surra, Z. Pi, and R. W. Heath, Jr., “Spatially sparse precoding in millimeter wave MIMO systems,” IEEE Trans. Wireless Commun., vol. 13, no 3, pp. 1499-1513, Mar. 2014.
[9] A. Alkhateeb, O. El Ayach, G. Leus, and R. W. Heath, Jr., “Channel estimation and hybrid precoding for millimeter wave cellular systems,” IEEE J. Sel. Topics Signal Process., vol. 8, no. 5, pp. 831-846, Oct. 2014.
[10] A. Alkhateeb, J. Mo, N. Gonzalez-Prelcic, and R. W. Heath, Jr., “MIMO precoding and combining solutions for millimeter-wave systems”, IEEE Commun. Mag., vol. 52, no. 12, pp. 122-131, 2014.
[11] C.-E. Chen, “An iterative hybrid transceiver design algorithm for millimeter wave MIMO systems”, IEEE Wireless Commun. Lett., vol. 4, no. 3, pp. 285-288, Jun. 2015.
[12] L. Liang, W. Xu and X. Dong, “Low-Complexity Hybrid Precoding in Massive Multiuser MIMO Systems,” IEEE Wireless Commun. Lett., vol. 3, no. 6, pp. 653-656, Dec. 2014.
[13] A. Alkhateeb, R. W. Heath and G. Leus, “Achievable rates of multi-user millimeter wave systems with hybrid precoding,” 2015 IEEE International Conference on Communication Workshop (ICCW), London, 2015, pp. 1232-1237.
[14] W. Roh, J.-Y. Seol, J. Park, B. Lee, J. Lee, Y. Kim, J. Cho, K. Cheun, and F. Aryanfar, “Millimeter-wave beamforming as an enabling technology for 5G cellular communications: Theoretical feasibility and prototype results,” IEEE Commun. Mag., vol. 52, no. 2, pp. 106–113, Feb. 2014.
[15] S. He, C. Qi, Y. Wu, and Y. Huang, “Energy-Efficient Transceiver Design for Hybrid Sub-Array Architecture MIMO Systems,” IEEE Access, vol. 4, pp. 9895–9905, Jan. 2017.
[16] N. Li, Z. Wei, H. Yang, X. Zhang, and D. Yang, “Hybrid precoding for mmWave massive MIMO systems with partially connected structure”, IEEE Access, vol. 5, pp. 15142-15151, Jun. 2017.
[17] J. Zhang, Y. Huang, T. Yu, J. Wang and M. Xiao, “Hybrid Precoding for Multi-Subarray Millimeter-Wave Communication Systems,” IEEE Wireless Communications Lett., vol. 7, no. 3, pp. 440-443, June 2018.
[18] A. Alkhateeb and R. W. Heath, Jr., “Frequency Selective Hybrid Precoding for Limited Feedback Millimeter Wave Systems,” IEEE Trans. Commun., vol. 64, no. 5, pp. 1801–1818, May. 2016.
[19] M. N. Kulkarni, A. Ghosh, and J. G. Andrews, “A Comparison of MIMO Techniques in Downlink Millimeter Wave Cellular Networks With Hybrid Beamforming,” IEEE Trans. Commun., vol. 64, no. 5, pp. 1952–1967, May. 2016.
[20] C.-H. Chen, C.-R. Tsai, Y.-H. Liu, W.-L. Hung, and A.-Y. Wu, “Compressive Sensing (CS)-Assisted Low-Complexity Beamspace Hybrid Precoding for Millimeter-Wave MIMO Systems,” IEEE Trans. Signal Process., vol. 65, no. 6, pp. 1412–1424, 2016.
[21] C. Kim, J.-S. Son, T. Kim, and J.-Y. Seol, “On the hybrid beamforming with shared array antenna for mmWave MIMO-OFDM systems,” in Proc. IEEE Wireless Commun. Netw. Conf. WCNC, Istanbul, Turkey, 2014, pp. 335–340.
[22] W. Ni and X. Dong, “Hybrid block diagonalization for massive multiuser MIMO systems,” IEEE Trans. Commun., vol. 64, no. 1, pp. 201–211, Jan. 2016.
[23] R. Méndez-Rial, C. Rusu, N. González-Prelcic, A. Alkhateeb, R. W. Heath, “Hybrid MIMO architectures for millimeter wave communications: Phase shifters or switches?”, IEEE Access, vol. 4, pp. 247-267, 2016.
[24] S. Payami, M. Ghoraishi, and M. Dianati, “Hybrid beamforming for large antenna arrays with phase shifter selection”, IEEE Trans. Wireless Commun., vol. 15, no. 11, pp. 7258-7271, Nov. 2016.
[25] S. Han, C.-L. I, Z. Xu, and C. Rowell, “Large-scale antenna systems with hybrid analog and digital beamforming for millimeter wave 5G”, IEEE Commun. Mag., vol. 53, no. 1, pp. 186-194, Jan. 2015.
[26] X. Yu, J. C. Shen, J. Zhang, and K. B. Letaief, “Alternating Minimization Algorithms for Hybrid Precoding in Millimeter Wave MIMO Systems,” IEEE J. Sel. Top. Signal Process., vol. 10, no. 3, pp. 485– 500, Feb. 2016.
[27] F. Sohrabi and W. Yu, “Hybrid analog and digital beamforming for OFDM-based large-scale MIMO systems”, IEEE 17th International Workshop on Signal Processing Advances in Wireless Communications (SPAWC), pp. 1-6, July 2016.
[28] S. Park, A. Alkhateeb and R. W. Heath, “Dynamic Subarrays for Hybrid Precoding in Wideband mmWave MIMO Systems,” IEEE Trans. Wireless Commun., vol. 16, no. 5, pp. 2907-2920, May 2017.
[29] W. Huang, Y. Huang, R. Zhao, S. He and L. Yang, “Wideband Millimeter Wave Communication: Single Carrier Based Hybrid Precoding With Sparse Optimization,” IEEE Trans. Vehicular Technology, vol. 67, no. 10, pp. 9696-9710, Oct. 2018.
[30] K. Venugopal, A. Alkhateeb, R. W. Heath, and N. G. Prelcic, “Time-domain channel estimation for wideband millimeter wave systems with hybrid architecture”, 2017 IEEE International Conference on Acoustics Speech and Signal Processing (ICASSP), pp. 6493-6497, March 2017.
[31] K. Venugopal, A. Alkhateeb, N. Gonzalez-Prelcic, R. W. Heath, “Channel estimation for hybrid architecture-based wideband millimeter wave systems”, IEEE J. Sel. Areas Commun., vol. 35, no. 9, pp. 1996-2009, Sep. 2017.
[32] J. P. González-Coma, N. González-Prelcic, L. Castedo and R. W. Heath, “Frequency selective multiuser hybrid precoding for mmWave systems with imperfect channel knowledge,” 2016 50th Asilomar Conference on Signals, Systems and Computers, pp. 291-295, Nov 2016.
[33] J. P. González-Coma, J. Rodríguez-Fernández, N. González-Prelcic, L. Castedo and R. W. Heath, “Channel estimation and hybrid precoding for frequency selective multiuser mmWave MIMO systems,” IEEE Journal of Selected Topics in Signal Processing, vol. 12, no. 2, pp. 353-367, May 2018.
[34] H. Zhao, R. Mayzus, S. Sun, M. Samimi, J. K. Schulz, Y. Azar, K. Wang, G. N. Wong, F. Gutierrez, Jr., and T. S. Rappaport, ‘‘28 GHz millimeter wave cellular communication measurements for reflection and penetration loss in and around buildings in New York City,’’ in Proc. IEEE Int. Conf. Commun., Jun. 2013, pp. 1–6.
[35] T. S. Rappaport, S. Sun, R. Mayzus, H. Zhao, Y. Azar, K. Wang, G. N. Wong, J. K. Schulz, M. Samimi, and F. Gutierrez, “Millimeter Wave Mobile Communications for 5G Cellular: It Will Work!,” IEEE Access, vol. 1, pp. 335-349, 2013.
[36] Y. Azar, G. N. Wong, K. Wang, R. Mayzus, J. K. Schulz, H. Zhao, F. Gutierrez, D. Hwang, and T. S. Rappaport, ‘‘28 GHz propagation measurements for outdoor cellular communications using steerable beam antennas in New York City,’’ in Proc. IEEE Int. Conf. Commun., Jun. 2013, pp. 1–6.
指導教授 陳永芳(Yung-Fang Chen) 審核日期 2019-8-16
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明