參考文獻 |
[1]D. B. Cox, "Integration of GPS with Inertial Navigation System, " Navigation, Journal of institute of Navigation, 1978.
[2] H. Liu, H. Darabi, P. Banerjee, and J. Liu, "Survey of Wireless Indoor Positioning Techniques and Systems," IEEE Transactions on Systems, vol. 37, no. 6, pp. 1067-1080, 2007.
[3] F. Palumbo, P. Barsocchi, S. Chessa, and J. C. Augusto, "A Stigmergic Approach to Indoor Localization Using Bluetooth Low Energy Beacons," IEEE International Conference on Advanced Video and Signal Based Surveillance.(AVSS), pp. 1-6, 2015, Karlsruhe, Germany
[4] M. G. Dissanayake, P. Newman, S. Clark, H. Durrant-Whyte, and M. Csorba, "A Solution to the Simultaneous Localization and Map Building (SLAM) Problem," IEEE Transactions on Robotics Automation, vol. 17, no. 3, pp. 229-241, 2001.
[5] N. Karlsson, E. di Bernardo, J. Ostrowski, L. Goncalves, P. Pirjanian, and M.E. Munich, "The vSLAM Algorithm for Robust Localization and Mapping," Proceedings of the IEEE International Conference on Robotics and Automation , pp. 24-29, 2005, Barcelona, Spain.
[6] B. Li, T. Gallagher, A. G Dempster, and C. Rizos, "How feasible is the use of magnetic field alone for indoor positioning?," IEEE International Conference on Indoor Positioning and Indoor Navigation. IPIN, pp. 1- 9, 2012, Sydney, NSW, Australia.
[7] P. Pivato, L. Palopoli, and D. Petri, "Accuracy of RSS-based centroid localization algorithms in an indoor environment," IEEE Transactions on Instrumentation and Measurement, vol. 60, no. 10, pp. 3451-3460, 2011.
[8] L. Wang, T. K. Hon, J. Reiss, and A. Cavallaro, "Self-localization of ad-hoc arrays using time difference of arrivals," IEEE Transactions on Signal Processing, vol. 64, no. 4, pp. 1018-1033, 2016.
[9] W. Storms, J. Shockley, J. Raquet, "Magnetic field navigation in an indoor environment," IEEE International Conference on Ubiquitous Positioning Indoor Navigation and Location Based Service, pp. 1-10, 2010.
[10] A. Saxena, M. Zawodniok, "Indoor Positioning System Using Geo-Magnetic Field," Proceedings of the IEEE International Instrumentation and Measurement Technology Conference. (I2MTC), pp. 572-577, 2014.
[11] B. Kim, and S. H. Kong, "A Novel Indoor Positioning Technique Using Magnetic Fingerprint Difference," IEEE Transactions on Instrumentation and Measurement, vol. 65, no. 9, pp. 2035-2045, 2016.
[12] H. Xie, T. Gu, X. Tao, H. Ye, and J. Lu, "A Reliability-Augmented Particle Filter for Magnetic Fingerprinting Based Indoor Localization on Smartphone," IEEE Transactions on Mobile Computing, vol. 15, no. 8, pp. 1877-1892, 2016.
[13] J. Chung, M. Donahoe, C. Schmandt, I. J. Kim, P. Razavai, and M. Wiseman, "Indoor location sensing using geo-magnetism," Proceedings of the ACM international conference on Mobile systems, applications, and services, pp. 141-154, 2011, New York, USA.
[14] Geomagnetic storm. [Online]Available: https://en.wikipedia.org/wiki/Geomagnetic_storm
[15] V. V. Meleshko, S. L. Lakoza, and S. A. Sharov, "Method of identifying and eliminating magnetic compass deviation," IEEE First Ukraine Conference on Electrical and Computer Engineering. UKRCON, pp. 288-291, 2017, Kiev, Ukraine.
[16] Y. Shu, C. Bo, G. Shen, C. Zhao, L. Li, F. Zhao, "Magicol: Indoor Localization Using Pervasive Magnetic Field and Opportunistic WiFi Sensing," IEEE Journal on Selected Areas in Communications, vol. 33, no. 7, pp. 1443-1457, 2015.
[17] Indooratlas. [Online] Available: https://www.indooratlas.com/
[18] C. Zhang, K. P. Subbu, J. Luo, and J. Wu, "GROPING: Geomagnetism and cROwdsensing Powered Indoor NaviGation," IEEE Transactions on Mobile Computing, vol. 14, no. 2, pp. 387-400, 2015.
[19] B. Li, T. Gallagher, A. G. Dempster, C. Rizos, "How feasible is the use of magnetic field alone for indoor positioning?" IEEE International Conference on Indoor Positioning and Indoor Navigation. (IPIN), pp. 1-9, 2012, Australia.
[20] W. Shao, H. Luo, F. Zhao, Y. Ma, Z. Zhao, A. Crivello, "Indoor Positioning Based on Fingerprint-Image and Deep Learning. " IEEE Access,vol. 6, pp. 74699–74712, 2018.
[21] W. Dyason, T. Niekerk, R. Phillips, R. Stopforth, "Performance evaluation and comparison of filters for real time embedded system applications" IEEE Pattern Recognition Association of South Africa and Robotics and Mechatronics. (PRASA-RobMech), pp.242-248,2017.
|