參考文獻 |
[1] Wu, X., Zhu, X., Wu, G., & Ding, W. (2014). Data mining with big data. IEEE Transactions on Knowledge and Data Engineering. 26(1), 97-107.
[2] Chiang, W. Y. (2018). Applying data mining for online CRM marketing strategy. British Food Journal. 120(3), 665-675.
[3] Kalmegh, S. (2015). Analysis of WEKA Data Mining Algorithm REPTree, Simple Cart and RandomTree for Classification of Indian News. International Journal of Innovative Science, Engineering & Technology. 2(2), 438-446.
[4] Buczak, A. L. & Guven, E. (2016). A Survey of Data Mining and Machine Learning Methods for Cyber Security Intrusion Detection. IEEE Communications Surveys & Tutorials. 18(2), 1153-1176.
[5] Rahman, F. A., Shamsuddin, S. M., Hassan, S., & Haris, N. A. (2016). A Review of KDD-Data Mining Framework and Its Application in Logistics and Transportation. International Journal of Supply Chain Management. 5(2), 77-84
[6] Blum, A. L. & Pat, L. (1997). Selection of relevant features and examples in machine learning. Artificial Intelligence. 97(1-2), 245-271.
[7] Holzinger, A., Dehmer, M., & Jurisica, I. (2014). Knowledge Discovery and interactive Data Mining in Bioinformatics - State-of-the-Art, future challenges and research directions. BMC Bioinformatics. 15(6), 1-9.
[8] Kim, W., Choi, B. J., Hong, E. K., Kim, S. K., & Doheon, L. (2003). A Taxonomy of Dirty Data. Data Mining and Knowledge Discovery. 7(1), 81-99.
[9] Pyle, D. (1999). Data Preparation for Data Mining. San Francisco: Morgan Kaufmann.
[10] Kotsiantis, S. B., Kanellopoulos, D., & Pintelas, P. E. (2006). Data Preprocessing for Supervised Leaning. International Journal of Computer Science. 1(1), 111-117.
[11] Meng X. F., Ci X. (2013). Big data management: Concepts, techniques and challenges. Journal of Computer Research and Development. 50(1), 146-169.
[12] Czarnowski, I. (2011). Cluster-based instance selection for machine classification. Knowledge and Information Systems. 30(1), 113-133.
[13] Wilson, D. R. & Martinez, T. R. (2000). An Integrated Instance-Based Learning Algorithm. Computational Intelligence. 16(1), 1-28.
[14] Zhang, J. (1992). Selecting Typical Instances in Instance-Based Learning. In Sleeman, D. & Edwards, P. (Eds.), Machine Learning Proceedings 1992 Through the past (470-479). San Francisco: Morgan Kaufmann.
[15] Zhang, S., Zhang, C., & Yang, Q. (2003). Data preparation for data mining. Applied Artificial Intelligence. 17(5-6), 375-381.
[16] Liu, H., Hussain, F., Tan, C. L., & Dash, M. (2002). Discretization: An Enabling Technique. Data Mining and Knowledge Discovery. 6(4), 393-423.
[17] Garcia, S., Luengo, J., Sáez, J. A., López, V., & Herrera, F. (2013). A Survey of Discretization Techniques: Taxonomy and Empirical Analysis in Supervised Learning. IEEE Transactions on Knowledge and Data Engineering. 25(4), 734-750.
[18] Cano, J. R., Herrera, F., & Lozano, M. (2003). Using evolutionary algorithms as instance selection for data reduction in KDD: an experimental study. IEEE Transactions on Evolutionary Computation. 7(6), 561-575.
[19] Romero, C., Ventura, S., Espejo, P. G., & Hervás, C. (2008). Data Mining Algorithms to Classify Students. Proceedings of the First International Conference on Educational Data Mining. 57-66.
[20] Stone, M. (1974). Cross-validation and multinomial prediction. Biometrika. 61(3), 509-515.
[21] Domindos, P. (1996). Unifying Instance-Based and Rule-Based Induction. Machine Learning. 24(2), 141-168.
[22] Leyva, E., González, A., & Pérez, R. (2015). Three new instance selection methods based on local sets: A comparative study with several approaches from a bi-objective perspective. Pattern Recognition. 48, 1523-1537.
[23] Olvera-López, J. A., Carrasco-Ochoa, J. A., Martínez-Trinidad, J. F., & Kittler, J. (2010). A review of instance selection methods. Artif Intell Rev. 34, 133-143.
[24] Derrac, J., Garcia, S., & Herrera, F. (2010). A survey on evolutionary instance selection and generation. International Journal of Applied Metaheuristic Computing. 1(1), 60-92.
[25] Garcı´a, S., Derrac, J., Cano, J. R., & Herrera, F. (2012). Prototype Selection for Nearest Neighbor Classification: Taxonomy and Empirical Study. IEEE Transactions on Pattern Analysis and machine Intelligence. 34(3), 417-435.
[26] García-Pedrajas, N. & Pérez-Rodríguez, J. (2012). Multi-selection of instances: A straightforward way to improve evolutionary instance selection. Applied Soft Computing. 12(11), 3590-3602.
[27] Triguero, I., Garcı´a, S., & Herrera, F. (2011). Differential evolution for optimizing the positioning of prototypes in nearest neighbor classification. Pattern Recognition. 44(4), 901-916.
[28] Espejo, P. G., Ventura, S., & Herrera, F. (2010). A Survey on the Application of Genetic Programming to Classification. IEEE Transactions on Systems, Man, and Cybernetics, Part C (Applications and Reviews). 40(2), 121-144.
[29] Ahn, H. & Kim, K. J. (2009). Bankruptcy prediction modeling with hybrid case-based reasoning and genetic algorithms approach. Applied Soft Computing. 9(2), 599-607.
[30] Goldberg, D. E. (1989). Genetic Algorithm in Search, Optimization, and Machine Learning. Boston: Addison Wesley.
[31] Beasley, J. E. & Chu, P. C. (1996). A genetic algorithm for the set covering problem. European Journal of Operational Research. 94(2), 392-404.
[32] Holland, J. H. (1975). Adaptation in natural and artificial systems. Massachusetts: The MIT Press.
[33] Elbeltagi, E., Hegazy, T., & Grierson, D. (2005). Comparison among five evolutionary-based optimization algorithms. Advanced Engineering Informatics. 19(1), 43-53.
[34] Beasley, D., Bull, D. R., & Martin, R. R. (1993). An Overview of genetic algorithms: Part I. Fundamentals. University Computing. 15(2), 58-69.
[35] Baker, J. E. (1987). Reducing bias and inefficiency in the selection algorithm. Proceedings of the Second International Conference on Genetic Algorithms. 14-21.
[36] Srinivas, M. & Patnaik, L. M. (1994). Adaptive Probabilities of Crossover and Mutation in Genetic Algorithms. IEEE Transactions on Systems, Man, and Cybernetics. 24(4), 656-667.
[37] Reeves, C. R. (1999). Foundations of Genetic Algorithms. Massachusetts: Morgan Kaufmann.
[38] Kazarlis, S. A., Bakirtzis, A. G., & Petridis, V. (1996). A Genetic Algorithm Solution To The Unit Commitment Problem. IEEE Transactions on Power Systems. 11(1), 83-92.
[39] Sikora, R. & Piramuthu, S. (2007). Framework for Efficient Feature Selection in Genetic Algorithm Based Data Mining. European Journal of Operational Research. 180(2), 723-737.
[40] Gates, G. W. (1972). The Reduced Nearest Neighbor Rule. IEEE Transactions on Information Theory. 18(3), 431-433.
[41] García-Pedrajas, N. (2009). Constructing Ensembles of Classifiers by Means of Weighted Instance Selection. IEEE Transactions on Neural Networks. 20(2), 258-277.
[42] Nikolaidis, K., Goulermas, J. Y., & Wu, Q. H. (2011). A Class Boundary Preserving Algorithm for Data Condensation. Pattern Recognition. 44(3), 704-715.
[43] Tsymbal, A. (2004). The Problem of Concept Drift: Definitions and Related Work. Technical Report TCD-CS-2004-15, Computer Science Department, Trinity College, Dublin, Ireland.
[44] Wilson, D. R. & Martinez, T. R. (2000). Reduction Techniques for Instance-Based Learning Algorithms. Machine Learning. 38(3), 257-286.
[45] Grochowski, M. & Jankowski, N. (2004). Comparison of instance selection II. Results , comments. In Rutkowski, L. (Eds.), ICAISC 2004, LNAI. Through the past (580-585). Poland: Springer.
[46] Liu, H. & Setino, R. (1997). Feature selection via discretization. IEEE Transactions on Knowledge and Data Engineering. 9(4), 642-645.
[47] Dougherty, J., Kohavi, R., & Sahami, M. (1995). Supervised and Unsupervised Discretization of Continuous Features. In Prieditis, A. & Russell, S. (Eds.), Proceedings of the Twelfth International Conference on Machine Learning (194–202). San Francisco, CA: Morgan Kaufmann.
[48] Liu, Huan. & Setiono, R. (1995). Chi2: feature selection and discretization of numeric attributes. Proceedings of 7th IEEE International Conference on Tools with Artificial Intelligence, Herndon, USA.
[49] Kotsiantis, S. & Kanellopoulos, D. (2006). Discretization Techniques: A Recent Survey. GESTS Int′l Trans. Computer Science and Eng. 48(1), 47-58.
[50] Dash, R., Paramguru, R. L., & Dash, R. (2011). Comparative Analysis of Supervised and Unsupervised Discretization Techniques. International Journal of Advances in Science and Technology. 2(3), 29-37.
[51] Kerber, R. (1992). ChiMerge Discretization of numeric attributes. Proceedings of the tenth national conference on Artificial intelligence. 123-128.
[52] Rosati, S., Balestra, G., Giannini, V., Mazzetti, S., Russo, F., & Regge, D. (2015). ChiMerge discretization method: Impact on a computer aided diagnosis system for prostate cancer in MRI. Proceedings of 2015 IEEE International Symposium on Medical Measurements and Applications (MeMeA). 297-302.
[53] Richeldi, M. & Rossotto, M. (1995). Class-Driven Statistical Discretization of Continuous Attributes (Extended Abstract). In Lavrac, N. & Wrobel, S. (Eds.), Proceedings of the 8th Conference on Machine Learning Heraclion (335-338). Berlin: Springer.
[54] Zhang, P. (1993). Model Selection Via Multifold Cross Validation. The Annals of Statistics. 21(1), 299-313.
|