參考文獻 |
[1] Hand, D. J. (2006). Data Mining. Encyclopedia of Environmetrics, 2.
[2] Fayyad, U., Piatetsky-Shapiro, G., & Smyth, P. (1996). From data mining to knowledge discovery in databases. AI magazine, 17(3), 37.
[3] Fayyad, U., Piatetsky-Shapiro, G., & Smyth, P. (1996). The KDD process for extracting useful knowledge from volumes of data. Communications of the ACM, 39(11), 27-35.
[4] Gaber, M. M., Zaslavsky, A., & Krishnaswamy, S. (2005). Mining data streams: a review. ACM Sigmod Record, 34(2), 18-26.
[5] Kotsiantis, S. B., Kanellopoulos, D., & Pintelas, P. E. (2006). Data preprocessing for supervised leaning. International Journal of Computer Science, 1(2), 111-117.
[6] Han, J., Pei, J., & Kamber, M. (2011). Data mining: concepts and techniques. Elsevier.
[7] Little, R. J., & Rubin, D. B. (2014). Statistical analysis with missing data (Vol. 333). John Wiley & Sons.
[8] Friedl, M. A., & Brodley, C. E. (1997). Decision tree classification of land cover from remotely sensed data. Remote sensing of environment, 61(3), 399-409.
[9] Troyanskaya, O., Cantor, M., Sherlock, G., Brown, P., Hastie, T., Tibshirani, R., ... & Altman, R. B. (2001). Missing value estimation methods for DNA microarrays. Bioinformatics, 17(6), 520-525.
[10] García-Laencina, P. J., Sancho-Gómez, J. L., & Figueiras-Vidal, A. R. (2010). Pattern classification with missing data: a review. Neural Computing and Applications, 19(2), 263-282.
[11] Safavian, S. R., & Landgrebe, D. (1991). A survey of decision tree classifier methodology. IEEE transactions on systems, man, and cybernetics, 21(3), 660-674.
[12] Farhangfar, A., Kurgan, L., & Dy, J. (2008). Impact of imputation of missing values on classification error for discrete data. Pattern Recognition, 41(12), 3692-3705.
[13] Krizhevsky, A., Sutskever, I., & Hinton, G. E. (2012). Imagenet classification with deep convolutional neural networks. In Advances in neural information processing systems (pp. 1097-1105).
[14] Little, R. J. (1988). A test of missing completely at random for multivariate data with missing values. Journal of the American statistical Association, 83(404), 1198-1202.
[15] Rubin, D. B. (1976). Inference and missing data. Biometrika, 63(3), 581-592.
[16] Scheffer, J. (2002). Dealing with missing data.
[17] Schafer, J. L., & Olsen, M. K. (1998). Multiple imputation for multivariate missing-data problems: A data analyst′s perspective. Multivariate behavioral research, 33(4), 545-571.
[18] Safavian, S. R., & Landgrebe, D. (1991). A survey of decision tree classifier methodology. IEEE transactions on systems, man, and cybernetics, 21(3), 660-674.
[19] Jin, C., De-Lin, L., & Fen-Xiang, M. (2009, July). An improved ID3 decision tree algorithm. In 2009 4th International Conference on Computer Science & Education (pp. 127-130). IEEE.
[20] Steinberg, D., & Colla, P. (2009). CART: classification and regression trees. The top ten algorithms in data mining, 9, 179.
[21] Schlomer, G. L., Bauman, S., & Card, N. A. (2010). Best practices for missing data management in counseling psychology. Journal of Counseling psychology, 57(1), 1.
[22] Keller, J. M., Gray, M. R., & Givens, J. A. (1985). A fuzzy k-nearest neighbor algorithm. IEEE transactions on systems, man, and cybernetics, (4), 580-585.
[23] Hastie, T., & Tibshirani, R. (1996). Discriminant adaptive nearest neighbor classification and regression. In Advances in Neural Information Processing Systems (pp. 409-415).
[24] Scholkopf, B., & Smola, A. J. (2001). Learning with kernels: support vector machines, regularization, optimization, and beyond. MIT press.
[25] Chang, C. C., & Lin, C. J. (2011). LIBSVM: a library for support vector machines. ACM transactions on intelligent systems and technology (TIST), 2(3), 27.
[26] Stekhoven, D. J., & Bühlmann, P. (2011). MissForest—non-parametric missing value imputation for mixed-type data. Bioinformatics, 28(1), 112-118.
[27] LeCun, Y., Bengio, Y., & Hinton, G. (2015). Deep learning. nature, 521(7553), 436.
[28] Rumelhart, D. E., Hinton, G. E., & Williams, R. J. (1985). Learning internal representations by error propagation (No. ICS-8506). California Univ San Diego La Jolla Inst for Cognitive Science.
[29] Gardner, M. W., & Dorling, S. R. (1998). Artificial neural networks (the multilayer perceptron)—a review of applications in the atmospheric sciences. Atmospheric environment, 32(14-15), 2627-2636.
[30] Goodfellow, I., Bengio, Y., & Courville, A. (2016). Deep learning. MIT press.
[31] Krizhevsky, A., Sutskever, I., & Hinton, G. E. (2012). Imagenet classification with deep convolutional neural networks. In Advances in neural information processing systems (pp. 1097-1105).
[32] Kalchbrenner, N., Grefenstette, E., & Blunsom, P. (2014). A convolutional neural network for modelling sentences. arXiv preprint arXiv:1404.2188.
[33] Zeiler, M. D., & Fergus, R. (2014, September). Visualizing and understanding convolutional networks. In European conference on computer vision (pp. 818-833). Springer, Cham.
[34] Nagi, J., Ducatelle, F., Di Caro, G. A., Cireşan, D., Meier, U., Giusti, A., ... & Gambardella, L. M. (2011, November). Max-pooling convolutional neural networks for vision-based hand gesture recognition. In 2011 IEEE International Conference on Signal and Image Processing Applications (ICSIPA) (pp. 342-347). IEEE.
|