博碩士論文 106521009 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:93 、訪客IP:3.145.204.140
姓名 羅偉誠(Wei-Cheng LUO)  查詢紙本館藏   畢業系所 電機工程學系
論文名稱 量子點奈米線製作的熱二極體
(Heat diodes made of quantum dot nanowires)
相關論文
★ 矽鍺/矽異質接面動態臨界電壓電晶體及矽鍺源/汲極結構之研製★ 量子點的電子能階
★ 應用於數位電視頻帶之平衡不平衡轉換器設計★ 單電子電晶體之元件特性模擬
★ 半導體量子點之穿隧電流★ 有機非揮發性記憶體之量測與分析
★ 鍺奈米線與矽奈米線電晶體之研製★ 選擇性氧化複晶矽鍺奈米結構形成鍺量子點及在單電子電晶體之應用
★ 以微控制器為基礎的智慧型跑步機系統研製★ 單電子電晶體耦合量子點的負微分電導效應
★ 單電子電晶體的熱電效應★ 多量子點系統之熱電效應
★ 多量子點系統之熱整流效應★ 單電子電晶體在有限溫度下的模擬
★ 分子電晶體之穿隧電流與熱電效應★ 串接耦合量子點之熱電特性
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 本論文探討非線性量子點奈米線系統之熱二極體特性分析。我們證實了非線性席貝克效應可以對階梯能階的量子點奈米線有電子熱整流效應,控制量子點奈米線系統的非對稱能階,我們可以在順偏時使得通道傾向共振狀態,反言之,逆偏時則會使通道傾向非共振狀態。一旦我們把聲子熱流考慮進來,會使得整體熱整流比率下降十倍左右。我們發現到熱整流比率可以在考慮矽的能階簡併態時有著顯著提升。除此之外,我們也在非線性量子點奈米線發現負微分熱導的現象,此現象有利應用在熱電邏輯電路以及熱電電晶體上,這對熱電發展是一個重要關鍵。未來,如果我們能夠有效的隔絕聲子,並且所花費的材料成本也夠低,那麼熱電元件會是我們能夠寄望的新元件。
摘要(英) This thesis investigates the nonlinear electron heat transport in quantum dots embedded in nanowires connected to metallic electrodes. It is demonstrated that the nonlinear Seebeck effect can lead to significant electron heat rectification for such a wire with staircase-like energy levels. The asymmetrical alignment of energy levels of QDNWs can be controlled to allow resonant electron transport under forward temperature bias, while they are in off-resonant regime under backward bias. Once taking into account the presence of phonon heat flows, the efficiency of electron heat rectification is suppressed. We find that R will be enhanced by taking advantage of the multi-valley degeneracy of the silicon QD. In addition to this, the behavior of the negative differential thermal conductance is a key ingredient for the implementation of thermal logical gates and transistors..
關鍵字(中) ★ 量子點奈米線
★ 熱二極體
關鍵字(英) ★ quantum dot nanowires
★ heat diodes
論文目次 目錄
第一章、 導論 1
1-1 : 前言 1
1-2 : 熱二極體及熱整流特性 2
1-3 : 文獻回顧 3
1-4 : 研究動機 4
第二章、 系統模型與公式推導 5
2-1 : 系統模型 5
2-2 : 電子流與電子熱流 8
2-3 : 電子傳輸係數 10
2-4 : 聲子熱流 11
第三章、 優化熱二極體系統的特性與分析 13
3-1 : 前言 13
3-2 : 系統溫差對電子熱流與熱電壓影響 14
3-3 : 系統平衡溫度對聲子熱流與熱整流比率影響 18
3-4 : 在考慮能階簡併態下系統溫差對電子熱流與熱整流比率影響 19 3-5 : 量子點能階差對熱整流比率之影響 21
3-6 : 負的微分熱導 22
3-7 : 熱激發輔助穿隧對電子熱導的影響 24
第四章、 結論 26
參考文獻 27
參考文獻 參考文獻
[1] M. Terraneo, M. Peyrard, and G. Casati,”Controlling the energy flow in Nonlinear lattices: A model for a thermal rectifier,” Phys. Rev. Lett. 88, p094302 ,(2002). [2] B. W. Li, L. Wang, and G. Casati,”Thermal diode: Rectification of heat flux,” Phys. Rev. Lett. 93, p184301, (2004).
[3] J. H. Lan and B. W. Li, ”Size-dependent thermal conductivity of nanoscale semiconducting systems,” Phys. Rev. B 74, p214305, (2006).
[4] S. Pal and I. K. Puri, ”Thermal rectification in a polymer-functionalized single-wall carbon nanotube,” Nanotechnology 25, p8, (2014).
[5] X. Cartoixa, L. Colombo, and R. Rurali,”Thermal Rectification by Design in Telescopic Si Nanowires,” Nano Lett. 15, p8255, (2015).
[6] Y. Li, X. Y. Shen, Z. H. Wu, J. Y. Huang, Y. X. Chen, Y. S. Ni, and J. P. Huang, ”Temperature-Dependent Transformation Thermotics: From Switchable Thermal Cloaks to Macroscopic Thermal Diodes,” Phys. Rev. Lett. 115, p195503, (2015).
[7] C. L. Chiu, C. H. Wu, B. W. Huang, C. Y. Chien and C. W. Chang, ”Detecting thermal rectification,”AIP ADVANCES 6, p121901, (2016).
[8] C. R. Otey, W. T. Lau, and S. H. Fan,”Thermal Rectification through Vacuum,” Phys. Rev. Lett. 104, p154301, (2010).
[9] D. M.-T. Kuo and Y. C. Chang,”Thermoelectric and thermal rectification properties of quantum dot junctions,” Phys. Rev. B 81, p205321, (2010).
[10] B. Li, L. Wang, and G. Casati, “Negative differential thermal resistance and thermal transistor”, Appl. Phys. Lett. 88, 143501 (2006).
[11] L. Wang and B. Li, “Thermal Logic Gates: Computation with Phonons”, Phys. Rev. Lett. 99, 177208 (2007).
[12] C. Starr, “The Copper Oxide Rectifier”, J. Appl. Phys. 7, 15 (1936).
[13] C. W. Chang, D. Okawa, A. Majumdar, and A. Zettl, “Solid-State Thermal Rectifier”, Science 314, 1121 (2006).
[14] K. Ito, K. Nishikawa, H. Iizuka, and H. Toshiyoshi,”Experimental investigation of radiative thermal rectifier using vanadium dioxide,” Appl. Phys. Lett. 105, p253503, (2014).
[15] M. J. Martinez-Perez, A. Fornieri, and F. Giazotto,”Rectification of electronic heat current by a hybrid thermal diode,” Nature Nanotech. 10, p303, (2015).
[16] H. Haug and A. P. Jauho, “Quantum Kinetics in Transport and Optics of Semiconductors”, (Springer, Heidelberg, 1996).
[17] D. M. T. Kuo and Y. C. Chang,”Thermoelectric properties of a quantum dot array connected to metallic electrodes,” Nanotechnology 24, p175403, (2013).
[18] R. K. Chen, A. I. Hochbaum, P. Murphy, J. Moore, P. D. Yang, and A. Majumdar, “Thermal Conductance of Thin Silicon Nanowires”, Phys. Rev. Lett. 101, 105501 (2008). [19] D. L. Nika, E. P. Pokatilov, A. A. Balandin, V. M. Fomin, A. Rastelli, and O. G. Schmidt, “Reduction of lattice thermal conductivity in one-dimensional quantum-dot superlattices due to phonon filtering”, Phys. Rev. B 84, 165415 (2011).
[20] Ming Hu and Dimos Poulikakos, “Si/Ge Superlattice Nanowires with Ultralow Thermal Conductivity”, Nano Lett. 12, 5487 (2012).
[21] D. M. T. Kuo, C. C. Chen, and Y. C. Chang, “Large enhancement in thermoelectric efficiency of quantum dot junctions due to increase of level degeneracy”, Phys. Rev. B 95, 075432 (2017).
[22] W. Lu, J. Xiang, B. P. Timko, Y. Wu, C. M. Lieber,”One-dimensional hole gas in germanium/silicon nanowire heterostructures,” Proc. Natl. Acad. Sci. U.S. A. 102, p10046, (2005).
[23] D. M. T. Kuo, “Heat diodes made of quantum dots embedded in nanowires connected to metallic electrodes” arXiv preprint arXiv:1706.06677, (2017)
[24] D. H. He, S. Buyukdagli and B. Hu, Phys. Rev. B 80, 104302 (2009). [25] L. Wang and B. Li, Phys. Rev. Lett. 99, 177208 (2007).
指導教授 郭明庭(Ming-Ting KUO) 審核日期 2019-6-26
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明