參考文獻 |
REFERENCES
Boselli, A., R. Caggiano, C. Cornacchia, F. Madonna, L. Mona, M. Macchiato, G. Pappalardo, and S. Trippetta (2012), Multi year sun-photometer measurements for aerosol characterization in a Central Mediterranean site, Atmospheric Research, 104, 98-110.
Claudio Tomasi, Sandro Fuzzi, and A. Kokhanovsky (2016), Atmospheric Aerosols: Life Cycles and Effects on Air Quality and Climate.
Du, Y., X. Xu, M. Chu, Y. Guo, and J. Wang (2016), Air particulate matter and cardiovascular disease: the epidemiological, biomedical and clinical evidence, J Thorac Dis, 8(1), E8-E19.
Eck, T. F., et al. (2005), Columnar aerosol optical properties at AERONET sites in central eastern Asia and aerosol transport to the tropical mid-Pacific, J Geophys Res-Atmos, 110(D6).
Engel-Cox, J. A., C. H. Holloman, B. W. Coutant, and R. M. Hoff (2004), Qualitative and quantitative evaluation of MODIS satellite sensor data for regional and urban scale air quality, Atmospheric Environment, 38(16), 2495-2509.
Fu, D., X. Xia, J. Wang, X. Zhang, X. Li, and J. Liu (2018), Synergy of AERONET and MODIS AOD products in the estimation of PM2.5 concentrations in Beijing, Sci Rep, 8(1), 10174.
Gatari, M., A. Wagner, and J. Boman (2005), Elemental composition of tropospheric aerosols in Hanoi, Vietnam and Nairobi, Kenya, Sci Total Environ, 341(1-3), 241-249.
Green, M., S. Kondragunta, P. Ciren, and C. Y. Xu (2009), Comparison of GOES and MODIS Aerosol Optical Depth (AOD) to Aerosol Robotic Network (AERONET) AOD and IMPROVE PM2.5 Mass at Bondville, Illinois, Journal of the Air & Waste Management Association, 59(9), 1082-1091.
Hai, C. D., and N. T. K. Oanh (2013), Effects of local, regional meteorology and emission sources on mass and compositions of particulate matter in Hanoi, Atmospheric Environment, 78, 105-112.
Hauser, A., D. Oesch, and N. Foppa (2005), Aerosol optical depth over land: Comparing AERONET, AVHRR and MODIS, Geophysical Research Letters, 32(17).
Hu, D. W., L. P. Qiao, J. M. Chen, X. N. Ye, X. Yang, T. T. Cheng, and W. Fang (2010), Hygroscopicity of Inorganic Aerosols: Size and Relative Humidity Effects on the Growth Factor, Aerosol and Air Quality Research, 10(3), 255-264.
Huang, C.-H. (2007), Field Comparison of Real-Time PM2.5 Readings from a Beta Gauge Monitor and a Light Scattering Method, 239-250 pp.
Hutchison, K. D., S. J. Faruqui, and S. Smith (2008), Improving correlations between MODIS aerosol optical thickness and ground-based PM2.5 observations through 3D spatial analyses, Atmospheric Environment, 42(3), 530-543.
Karagulian, F., C. Belis, F. Lagler, M. Barbiere, and M. Gerboles (2012), Evaluation of a portable nephelometer against the Tapered Element Oscillating Microbalance method for monitoring PM2.5, 2145-2153 pp.
Lee, B. J., B. Kim, and K. Lee (2014), Air pollution exposure and cardiovascular disease, Toxicol Res, 30(2), 71-75.
Li, B. G., H. S. Yuan, N. Feng, and S. Tao (2009), Comparing MODIS and AERONET aerosol optical depth over China, International Journal of Remote Sensing, 30(24), 6519-6529.
Li, J., Z. Han, and R. Zhang (2014), Influence of aerosol hygroscopic growth parameterization on aerosol optical depth and direct radiative forcing over East Asia, 14–27 pp.
Li, R., R. Zhou, and J. Zhang (2018), Function of PM2.5 in the pathogenesis of lung cancer and chronic airway inflammatory diseases, Oncol Lett, 15(5), 7506-7514.
Li, T., H. Shen, and L. Zhang (2016), Mapping PM2.5 distribution in China by fusing station measurements and satellite observation, 2016 IEEE International Geoscience and Remote Sensing Symposium (IGARSS), 5761-5764.
Li, T. W., H. F. Shen, C. Zeng, Q. Q. Yuan, and L. P. Zhang (2017), Point-surface fusion of station measurements and satellite observations for mapping PM2.5 distribution in China: Methods and assessment, Atmospheric Environment, 152, 477-489.
Lin, T. H., G. R. Liu, and C. Y. Liu (2016), A Novel Index for Atmospheric Aerosol Types Categorization with Spectral Optical Depths from Satellite Retrieval, ISPRS - International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, XLI-B8, 277-279.
Liu, Y., J. A. Sarnat, A. Kilaru, D. J. Jacob, and P. Koutrakis (2005), Estimating ground-level PM2.5 in the eastern united states using satellite remote sensing, Environmental Science & Technology, 39(9), 3269-3278.
Mariano, G. L., F. Lopes, M. Jorge, and E. Landulfo (2010), Assessment of biomass burnings activity with the synergy of sunphotometric and LIDAR measurements in São Paulo, Brazil, 486-499 pp.
McPhetres, A., and S. Aggarwal (2018), An Evaluation of MODIS-Retrieved Aerosol Optical Depth over AERONET Sites in Alaska, Remote Sensing, 10(9).
NASA (2013a), National Aeronautics and Space Administration, MODIS product description. http://modis-atmos.gsfc.nasa.gov/MOD04_L2/.
Paciorek, C. J., Y. Liu, H. Moreno-Macias, and S. Kondragunta (2008), Spatiotemporal associations between GOES aerosol optical depth retrievals and ground-level PM2.5, Environmental Science & Technology, 42(15), 5800-5806.
Remer, L. A., et al. (2005), The MODIS aerosol algorithm, products, and validation, Journal of the Atmospheric Sciences, 62(4), 947-973.
Saksena, S., P. V. Luong, D. D. Quan, P. T. Nhat, D. T. Tho, and T. N. Quang (2006), Commuters′ exposure to particulate matter and carbon monoxide in Hanoi, Vietnam: a pilot study, 1-33 pp.
Tao, J. H., M. G. Zhang, L. F. Chen, Z. F. Wang, L. Su, C. Ge, X. Han, and M. M. Zou (2013), A method to estimate concentrations of surface-level particulate matter using satellite-based aerosol optical thickness, Sci China Earth Sci, 56(8), 1422-1433.
V. Martonchik, J., D. J. Diner, R. Kahn, B. J. Gaitley, and B. Holben (2004), Comparison of MISR and AERONET aerosol optical depths over desert sites.
Wang, J., and S. A. Christopher (2003), Intercomparison between satellite-derived aerosol optical thickness and PM2.5 mass: Implications for air quality studies, Geophysical Research Letters, 30(21).
Zheng, C. W., C. F. Zhao, Y. N. Zhu, Y. Wang, X. Q. Shi, X. L. Wu, T. M. Chen, F. Wu, and Y. M. Qiu (2017), Analysis of influential factors for the relationship between PM2.5 and AOD in Beijing, Atmospheric Chemistry and Physics, 17(21), 13473-13489. |