博碩士論文 105022005 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:142 、訪客IP:3.22.79.55
姓名 陳以耕(Yi-Keng Chen)  查詢紙本館藏   畢業系所 遙測科技碩士學位學程
論文名稱 整合光學與雷達紋理資訊於人工神經網路進行事件型崩塌偵測
(An Artificial Neural Network Approach for Event Landslide Detection based on the Integration of Optical and SAR Textures)
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 光學影像基於其高分辨率的光譜特性,經常被應用於進行崩塌偵測,但光學影像在應用上的主要限制為受雲層覆蓋時無法有效地、即時地進行崩塌偵測。合成孔徑雷達(SAR)的訊號可以穿透雲層覆蓋並透過檢測迴波特性來識別地表的變化,因此應用雷達影像在災害的緊急監測上擁有更高的策略彈性,有助於設計、執行與評估災害風險和災後復原計劃。本研究針對事件型崩塌(如颱風、地震等災害事件誘發之崩他),應用變遷偵測技術,嘗試整合遙測光學影像與雷達影像在崩塌監測中的優勢,發展一並基於物件導向分析法(OBIA)之事件型崩塌偵測方法,使其能夠在多雲霧的天氣條件下保持高精度的崩塌偵測成果,以提高救災效果,減少災害發生期間和之後的人員傷亡與財產損失。
本研究選取台灣南部的荖濃溪流域作為研究區,該地區在2009年莫拉克颱風期間因暴雨而引發了大規模山崩並造成嚴重的破壞。具體分別使用事件前與事件後的FORMOSAT-2光學影像及L波段的ALOS-PALSAR雷達影像計算兩種影像指數:標準化植被指數差(NDVIdiff)和標準化Sigma指數(NDSI)。使用物件導向分析法,產製六張光學與六張雷達紋理圖像(平均值,標準差,對比,熵,同質性和相異性)進行崩塌探測。因為在山區中光學與雷達影像有著座標對位的問題而難以實現像素級和特徵級影像融合,因此本研究採用決策級融合法。考慮到近年來機器學習演算法在圖像分類中的成功應用,本研究使用了人工類神經網絡(ANN)分類器。總體進行了五項試驗:(1)光學影像試驗(ANN-NDVIdiff)、(2)雷達影像試驗(ANN-NDSI)、(3)光學及雷達影像整合試驗(ANN-All)、(4)光學影像受雲霧影響試驗以及(ANN-Cloud)(5)以雷達影像補償光學影像中之雲霧試驗(ANN-Mosaic)。
實驗結果表明,由光學及雷達影像整合試驗成果(ANN-all)取得之崩塌偵測結果比其他試驗結果有更高的總體精度和Kappa係數,顯示了光學與雷達影像的融合成果在崩塌偵測任務中的可行性與適用性。此外,研究成果顯示僅使用雷達影像之試驗(ANN-NDSI)仍可以探測到崩塌區域的大致位置,尤其適用於大規模崩塌。本研究認為在惡劣天氣情況下,雷達影像可以代替光學影像進行緊急的崩塌偵測作業。
摘要(英) Optical remote sensing data has been used to assist the preparation of landslide inventory based on its high distinguishability of spectrum characteristic. However, its applicability can be limited when the applied image is contaminated by cloud. Synthetic Aperture Radar (SAR) signals can penetrate cloud and identify land surface changes by examining their backscattering characteristics which are useful information for landslide detection. Therefore, SAR-based emergency mapping has recognizable potential to design, implement, and evaluate disaster risks and recovery programs. The major objective in this study is to develop a method that can integrate both optical and SAR remote sensing data for an effective and rapid landslide detection, and aims to maintain high accuracy during cloudy weather conditions.
Accordingly, to integrate advantages of both remote sensing data in landslide detection, decision-level image fusion approach in an object-based image analysis (OBIA) framework is designed and tested in this study. The Laonong River watershed in southern Taiwan is selected as the study site, where heavy rainfall induced large-scale landslides and caused severe damages during Typhoon Morakot in 2009. Specifically, two indices, Normalized Difference Vegetation Index difference (NDVIdiff) for optical data and Normalized Difference Sigma-naught Index (NDSI) for SAR data, were separately calculated by using pre- and post-event Formosat-2 images and L-band ALOS-PALSAR images respectively, and then were applied in the OBIA to generate six texture indices (mean, standard deviation, contrast, entropy, homogeneity and dissimilarity) for both optical and SAR data. Decision-level fusion is adopted in this study when pixel-level and feature-level fusion are difficult to practice due to co-registration issue between optical and SAR images over mountainous area. In the study, considering the successful application of machine-learning algorithm in image classification in recent years, Artificial Neural Network (ANN) classifier is therefore applied. Overall, five experiments were performed and simulated: (1) ANN-NDVIdiff, (2) ANN-NDSI, (3) ANN-All, (4) ANN-Cloud and (5) ANN-Mosaic.
Finally, landslide detection results obtained by ANN-All show higher overall accuracy and Kappa coefficient than other experiments, indicating the significance of applicability of optical-SAR fused data in landslide mapping task. In other hand, result of ANN-NDSI indicates that SAR image can detect landslide areas in approximately location, especially performs well for large scale landslides. SAR image can instead of optical image during cloudy weather situation for emergency landslide mapping.
關鍵字(中) ★ 崩塌偵測
★ 合成孔徑雷達
★ 影像紋理
★ 影像融合
★ 人工類神經網路
關鍵字(英) ★ Landslide detection
★ Synthetic Aperture Radar (SAR)
★ Image texture
★ Image fusion
★ Artificial Neural Network (ANN)
論文目次 中文摘要 i
ABSTRACT ii
謝誌 iv
List of Figure vii
List of Table ix
CHAPTER 1 INTRODUCTION 1
1.1 Research Background and Motivation 1
1.2 Research Objective 3
1.21 Application of NDVIdiff and NDSI for change detection analysis 4
CHAPTER 2 LITERATURE REVIEWS 6
2.1 Current Methods of Landslide Mapping 6
2.2 PolSAR Texture for Feature Detection 8
2.3 Image Fusion for Data Interpretation 10
2.4 Supervised OBIA in ANN 14
CHAPTER 3 STUDY AREA 20
3.1 Typhoon Event 20
3.2 Study Area 21
CHAPTER 4 METHODOLOGY 23
4.1 Image Segmentation in eCognition 24
4.2 Artificial Neural Network Classification 28
4.2.1 Spectral separability 28
4.2.2 Artificial neural network 29
4.2.3 BPNN Data Normalization 32
4.2.4 BPNN Parameter Setting 32
4.3 The Contribution of Independent Variables 35
4.4 Landslide Probability Thresholding 35
4.5 Accuracy Assessment 36
CHAPTER 5 MATERIALS 40
5.1 Optical Satellite Imagery: FORMOSAT-2 40
5.2 Synthetic Aperture Radar Satellite Imagery: ALOS/PALSAR 47
5.3 Digital Elevation Model 56
5.4 Landslide Inventory 57
CHAPTER 6 RESULTS AND DISCUSSION 59
6.1 Segmentation and texture images 59
6.2 Training Sample Selection 66
6.3 Image Classification Results 73
6.3.1 ANN-NDSI 74
6.3.2 ANN-NDVIdiff 83
6.3.3 ANN-All 91
6.3.4 ANN-Cloud 99
6.3.5 ANN-Mosaic 102
CHAPTER 7 CONCLUSION 105
7.1 Conclusion 105
7.2 Recommendation 107
REFERENCE 109
CHINESE REFERENCE 115
參考文獻 Furuta, R., Tomiyama, N. (2008). A Study of Detection of Landslide Disasters due to the Pakistan Earthquake using ALOS data.
Tsou, C.Y., Feng, Z.Y., Chigira, M. (2011). Catastrophic landslide induced by Typhoon Morakot, Shiaolin, Taiwan. Geomorphology, 127, 166-178.
Mondini, A.C., Chang, K.T. (2014). Combining spectral and geoenvironmental information for probabilistic event landslide mapping. Geomorphology, 213, 183-189.
Furuta, R., Yashima, A., Saeada, K., Fukuoka, H. (2014). ESTABLISHMENT OF LANDSLIDE MONITORING HAZARD LEVEL ASSESSMENT SYSTEM BY ALOS, AND ITS APPLICATION.
Guzzetti, F., Garrara, A., Cardinali, M., Reichenbach, P. (1999). Landslide hazard evaluation: a review of current techniques and their application in a multi-scale study, Central Italy. Geomorphology, 31, 181-216.
Casagli, N., Cigna, F., Bianchini, S., Hölbling, D., Füreder, P., Righini, G., Del Conte, S., Friedl, B., Schneiderbauer, S., Iasio, C., Vlcko, J., Greif, V., Proske, H., Granica, K., Falco, S., Lozzi, S., Mora, O., Arnaud, A., Novali, F., Bianchi, M. (2016). Landslide mapping and monitoring by using radar and optical remote sensing: Examples from the EC-FP7 project SAFER. Remote Sensing Applications: Society and Environment, 4, 92-108.
Del Ventisette, C., Righini, G., Moretti, S., Casagli, N. (2014). Multitemporal landslides inventory map updating using spaceborne SAR analysis. International Journal of Applied Earth Observation and Geoinformation, 30, 238-246.
Chen, C.W., Saito, H., Oguchi, T. (2015). Rainfall intensity–duration conditions for mass movements in Taiwan. Progress in Earth and Planetary Science, 2:14.
Chiang, S.H., Chang, K.T., Mondini, A.C., Tsai, B.W., Chen, C.Y. (2012). Simulation of event-based landslides and debris flows at watershed level. Geomorphology, 138, 306-318.
Wang, L.J., Sawada, K., Moriguchi, S. (2013). Landslide susceptibility analysis with logistic regression model based on FCM sampling strategy. Computers & Geosciences, 57, 81-92.
Guzzetti, F., Mondini, A.C., Gardinali, M., Fiorucci, F., Santangelo, M., Chang, K.T. (2012). Landslide inventory maps: New tools for an old problem. Earth-Science Reviews, 112, 42-66.
Singh, M. Kaur, G. (2011). SAR Image Classification Using PCA and Texture Analysis. 2011 Book Information Technology And Mobile, 147, 435-439.
Freeman, A. Durden, L. (1998). A Three-Component Scattering Model for Polarimetric SAR Data. IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 36, 963-973.
Shimada, M., Watanabe, M., Kawano, N., Ohki, M., Motooka, T., Wada, Y. (2014). Detecting Mountainous Landslides by SAR Polarimetry: A Comparative Study Using Pi-SAR-L2 and X-band SARs. Transactions of the Japan Society for Aeronautical and Space Sciences, Aerospace Technology Japan, 12(29), Pn_9-Pn_15.
Kandaswamy, U. Adjeroh, D.A., Lee, M.C. (2005). Efficient texture analysis of SAR imagery. IEEE Transactions on Geoscience and Remote Sensing, 43(9), 2075-2083.
Shibayama, T., Yamaguchi, Y., Yamada, H. (2015). Polarimetric Scattering Properties of Landslides in Forested Areas and the Dependence on the Local Incidence Angle. remote sensing, 7(11), 15424-15442.
Wang, M., Zhou, S.D., Bai, H., Ma, N., Ye, S. (2010). SAR Water Image Segmentation Based on GLCM and Wavelet Textures. 2010 6th International Conference on Wireless Communications Networking and Mobile Computing (WiCOM).
Shanmugan, K.S., Narayanan, V., Frost, V.S., Stiles, J.A., Holtzman, J.C. (1981). Textural Features for Radar Image Analysis. IEEE Transactions on Geoscience and Remote Sensing, GE-19(3), 153-156.
Visa, S., Ramsay, B., Ralescu, A., Knaap, E.V.D. (2011). Confusion Matrix-based Feature Selection. MAICS.
Sim, J., Wright, C.C. (2005). The Kappa Statistic in Reliability Studies: Use, Interpretation, and Sample Size Requirements. Physical Therapy, 85(3), 257-268.
Saharia, A., Kedia, Y. (2016). A Review paper on Artificial Neural Networks. SSRG International Journal of Electronics and Communication Engineering, 3(8), 65-71.
Bourquin, J., Schmidli, H., Hoogevest, P.V., Leuenberger, H. (1998). Advantages of Artificial Neural Networks (ANNs) as alternative modelling technique for data sets showing non-linear relationships using data from a galenical study on a solid dosage form. European Journal of Pharmaceutical Sciences, 7, 5-16.
Dharwal, R., Kaur, L. (2016). Applications of Artificial Neural Networks: A Review. Indian Journal of Science and Technology, 9(47), 1-8.
Ermini, L., Catani, F., Casagli, N. (2005). Artificial Neural Networks applied to landslide susceptibility assessment. Geomorphology, 66, 327-343.
Brown, M.K. (2012). LANDSLIDE DETECTION AND SUSCEPTIBILITY MAPPING USING LIDAR AND ARTIFICIAL NEURAL NETWORK MODELING: A CASE STUDY IN GLACIALLY DOMINATED CUYAHOGA RIVER VALLEY, OHIO. Graduate College of Bowling Green State University.
Pradhan, B., Lee, S. (2009). Landslide risk analysis using artificial neural network model focusing on different training sites. International Journal of Physical Sciences, 4(1), 001-015.
Pradhan, B., Lee, S., Buchroithner, M.F. (2010). A GIS-based back-propagation neural network model and its cross-application and validation for landslide susceptibility analyses. Computers, Environment and Urban Systems, 34, 216-235.
Zhang, P., Lv, Z., Gao, L., Huang, L. (2010). A New Framework of the Unsupervised Classification for High-Resolution Remote Sensing Image. TELKOMNIKA, 10, 1746-1755.
Heermann, P.D., Khazenie, N. (1992). Classification of Multispectral Remote Sensing Data Using a Back-Propagation Neural Network. IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 30, 81-88.
Chen, H., Zeng, Z. (2012). Deformation Prediction of Landslide Based on Improved Back-propagation Neural Network. Cognitive Computation, 5(1), 56-62.
Pradhan, B., Lee, S. (2010). Landslide susceptibility assessment and factor effect analysis: backpropagation artificial neural networks and their comparison with frequency ratio and bivariate logistic regression modelling Biswajeet Pradhan. Environmental Modelling & Software, 25, 747-759.
Neaupane, K.M., Achet, S.H. (2004). Use of backpropagation neural network for landslide monitoring: a case study in the higher Himalaya. Engineering Geology, 74, 213-226.
Yu, B., Chen, F. (2017). A new technique for landslide mapping from a large-scale remote sensed image: A case study of Central Nepal. Computers & Geosciences, 100, 115-124.
Manconi, A., Casu, F., Ardizzone, F., Bonano, M., De Luca, C., Gueguen, E., Marchesini, I., Parise, M., Vennari, C., Lanari, R., Guzzetti, F. (2014). Brief Communication: Rapid mapping of landslide events: the 3 December 2013 Montescaglioso landslide, Italy. Natural Hazards and Earth System Sciences, 14(7), 1835-1841.
Voigt, S., Giulio-Tonolo, F., Lyons, J., Kučera, J., Jones, B., Schneiderhan, T., Platzeck, G., Kaku, K., Hazarika, M.K., Czaran, L., Li, S., Pedersen, W., James, G.K., Proy, C., Muthike, D.M., Bequignon, J., Guha-Sapir, D. (2016). Global trends in satellite-based emergency mapping. Science, 353(6296), 247-252.
Hoffmann, R., Reulke, R. (2008). Aspects of Standardization of Sensor and Data Fusion of Remote Sensing Data. ISPRS 2008 Congress, 41-46.
Wu, M.C., Chen, K.S. (2008). Fusion of SPOT and SAR Images for Land Cover Classification. Journal of Photogrammetry and Remote Sensing, 12, 59-72.
Hall-Beyer, M. (2017). GLCM TEXTURE: A TUTORIAL. University of Calgary.
Hölbling, D., Füreder, P., Antolini, F., Cigna, F., Casagli, N., Lang, S. (2012). A Semi-Automated Object-Based Approach for Landslide Detection Validated by Persistent Scatterer Interferometry Measures and Landslide Inventories. Remote Sensing, 4(5), 1310-1336.
Liu, D., Xia, F. (2010). Assessing object-based classification: advantages and limitations. Remote Sensing Letters, 1:4, 187-194.
Arvor, D., Durieux, L., Andrés, S., Laporte, M.A. (2010). Advances in Geographic Object-Based Image Analysis with ontologies: A review of main contributions and limitations from a remote sensing perspective. ISPRS Journal of Photogrammetry and Remote Sensing, 82, 125-137.
Hölbling, D., Friedl, B., Eisank, C. (2015). An object-based approach for semi-automated landslide change detection and attribution of changes to landslide classes in northern Taiwan. Earth Science Informatics, 8(2), 327-335.
Dronova, I. (2015). Object-Based Image Analysis in Wetland Research: A Review. remote sensing, 7, 6380-6413.
Wistrand, G.M. (2016). Investigating the potential of objectbased image analysis to identify tree avenues in high resolution aerial imagery and lidar data. Department of Physical Geography and Ecosystem Science, Lund University.
Pradhan, B., Alsaleh, A. (2017). A Supervised Object-Based Detection of Landslides and Man-Made Slopes Using Airborne Laser Scanning Data. Laser Scanning Applications in Landslide Assessment, 23-50.
Blaschke, T., Hay, G.J., Kelly, M., Lang, S., Hofmann, P., Addink, E., Feitosa, R.Q., Meer, F.V.D., Werff, H.V.D., Coillie, F.V., Tiede D. (2014). Geographic Object-Based Image Analysis – Towards a new paradigm. ISPRS Journal of Photogrammetry and Remote Sensing, 87, 180-191.
Al-doski, J., Mansorl, S.B., Shafri, H.Z.M. (2013). Image Classification in Remote Sensing. Journal of Environment and Earth Science, 3, 141-147.
Ma, L., Li, M., Ma, X., Cheng, L., Du, P., Liu, Y. (2017). A review of supervised object-based land-cover image classification. ISPRS Journal of Photogrammetry and Remote Sensing, 130, 277-293.
Blaschke, T., Lang, S., Hay, G.J. (2008). Object-Based Image Analysis. Spatial Concepts for Knowledge-Driven Remote Sensing Applications.
Blaschke, T., Strobl, J. (2001). What’s wrong with pixels? Some recent developments interfacing remote sensing and GIS. INTERFACING REMOTE SENSING AND GIS, 12-17.
Blaschke, T. (2010). Object based image analysis for remote sensing. ISPRS Journal of Photogrammetry and Remote Sensing, 65, 2-16.
Lai, J.S. (2017). Improving Regional Landslide Susceptibility Assessments by Integrating Geo-spatial Data and Data Mining Algorithms. Doctoral Dissertation, Department of Civil Engineering, National Central University.
Haralick, R.M., Shanmugam, K., Dinstein, I. (1973). Textural Features for Image Classification. IEEE Transactions on Systems, Men and Cybernetics, 6, 610-621.
Synthetic Aperture Radar Slant-range distortion. Retrieved from http://www.radartutorial.eu/20.airborne/ab07.en.html
Kaohsiung Climate, Urban Development Bureau, Kaohsiung City Government. Retrieved from https://www.kcg.gov.tw/EN/cp.aspx?n=4892E8B8F5C0E174
姜壽浩,2016。崩塌地幾何形貌分析方法之建立。行政院農業委員會水土保持局報告書,3-51。
姜壽浩、莊詠婷,2017。應用Sentinel-1合成孔徑雷達影像對舊有崩塌進行再發性評估。行政院農業委員會水土保持局報告書,3-62。
賴哲儇,2009。高光譜影像立方體於特徵空間之三維紋理計算。國立中央大學土木工程研究所碩士論文,4-16。
民政司、社會司,2009。莫拉克颱風災害應變處置報告第74報。中央災害應變中心報告書,1-5。
廖志中,潘以文,李國維,王慧蓉,康耿豪,簡翊文,鄭又珍,李膺讚、林貴崑,2017,大規模崩塌潛勢區的調查與監測。Taiwan Forestry Journal,3-12。
指導教授 姜壽浩 張中白(Shou-Hao Chiang Chung-Pai Chang) 審核日期 2019-8-22
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明