參考文獻 |
Furuta, R., Tomiyama, N. (2008). A Study of Detection of Landslide Disasters due to the Pakistan Earthquake using ALOS data.
Tsou, C.Y., Feng, Z.Y., Chigira, M. (2011). Catastrophic landslide induced by Typhoon Morakot, Shiaolin, Taiwan. Geomorphology, 127, 166-178.
Mondini, A.C., Chang, K.T. (2014). Combining spectral and geoenvironmental information for probabilistic event landslide mapping. Geomorphology, 213, 183-189.
Furuta, R., Yashima, A., Saeada, K., Fukuoka, H. (2014). ESTABLISHMENT OF LANDSLIDE MONITORING HAZARD LEVEL ASSESSMENT SYSTEM BY ALOS, AND ITS APPLICATION.
Guzzetti, F., Garrara, A., Cardinali, M., Reichenbach, P. (1999). Landslide hazard evaluation: a review of current techniques and their application in a multi-scale study, Central Italy. Geomorphology, 31, 181-216.
Casagli, N., Cigna, F., Bianchini, S., Hölbling, D., Füreder, P., Righini, G., Del Conte, S., Friedl, B., Schneiderbauer, S., Iasio, C., Vlcko, J., Greif, V., Proske, H., Granica, K., Falco, S., Lozzi, S., Mora, O., Arnaud, A., Novali, F., Bianchi, M. (2016). Landslide mapping and monitoring by using radar and optical remote sensing: Examples from the EC-FP7 project SAFER. Remote Sensing Applications: Society and Environment, 4, 92-108.
Del Ventisette, C., Righini, G., Moretti, S., Casagli, N. (2014). Multitemporal landslides inventory map updating using spaceborne SAR analysis. International Journal of Applied Earth Observation and Geoinformation, 30, 238-246.
Chen, C.W., Saito, H., Oguchi, T. (2015). Rainfall intensity–duration conditions for mass movements in Taiwan. Progress in Earth and Planetary Science, 2:14.
Chiang, S.H., Chang, K.T., Mondini, A.C., Tsai, B.W., Chen, C.Y. (2012). Simulation of event-based landslides and debris flows at watershed level. Geomorphology, 138, 306-318.
Wang, L.J., Sawada, K., Moriguchi, S. (2013). Landslide susceptibility analysis with logistic regression model based on FCM sampling strategy. Computers & Geosciences, 57, 81-92.
Guzzetti, F., Mondini, A.C., Gardinali, M., Fiorucci, F., Santangelo, M., Chang, K.T. (2012). Landslide inventory maps: New tools for an old problem. Earth-Science Reviews, 112, 42-66.
Singh, M. Kaur, G. (2011). SAR Image Classification Using PCA and Texture Analysis. 2011 Book Information Technology And Mobile, 147, 435-439.
Freeman, A. Durden, L. (1998). A Three-Component Scattering Model for Polarimetric SAR Data. IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 36, 963-973.
Shimada, M., Watanabe, M., Kawano, N., Ohki, M., Motooka, T., Wada, Y. (2014). Detecting Mountainous Landslides by SAR Polarimetry: A Comparative Study Using Pi-SAR-L2 and X-band SARs. Transactions of the Japan Society for Aeronautical and Space Sciences, Aerospace Technology Japan, 12(29), Pn_9-Pn_15.
Kandaswamy, U. Adjeroh, D.A., Lee, M.C. (2005). Efficient texture analysis of SAR imagery. IEEE Transactions on Geoscience and Remote Sensing, 43(9), 2075-2083.
Shibayama, T., Yamaguchi, Y., Yamada, H. (2015). Polarimetric Scattering Properties of Landslides in Forested Areas and the Dependence on the Local Incidence Angle. remote sensing, 7(11), 15424-15442.
Wang, M., Zhou, S.D., Bai, H., Ma, N., Ye, S. (2010). SAR Water Image Segmentation Based on GLCM and Wavelet Textures. 2010 6th International Conference on Wireless Communications Networking and Mobile Computing (WiCOM).
Shanmugan, K.S., Narayanan, V., Frost, V.S., Stiles, J.A., Holtzman, J.C. (1981). Textural Features for Radar Image Analysis. IEEE Transactions on Geoscience and Remote Sensing, GE-19(3), 153-156.
Visa, S., Ramsay, B., Ralescu, A., Knaap, E.V.D. (2011). Confusion Matrix-based Feature Selection. MAICS.
Sim, J., Wright, C.C. (2005). The Kappa Statistic in Reliability Studies: Use, Interpretation, and Sample Size Requirements. Physical Therapy, 85(3), 257-268.
Saharia, A., Kedia, Y. (2016). A Review paper on Artificial Neural Networks. SSRG International Journal of Electronics and Communication Engineering, 3(8), 65-71.
Bourquin, J., Schmidli, H., Hoogevest, P.V., Leuenberger, H. (1998). Advantages of Artificial Neural Networks (ANNs) as alternative modelling technique for data sets showing non-linear relationships using data from a galenical study on a solid dosage form. European Journal of Pharmaceutical Sciences, 7, 5-16.
Dharwal, R., Kaur, L. (2016). Applications of Artificial Neural Networks: A Review. Indian Journal of Science and Technology, 9(47), 1-8.
Ermini, L., Catani, F., Casagli, N. (2005). Artificial Neural Networks applied to landslide susceptibility assessment. Geomorphology, 66, 327-343.
Brown, M.K. (2012). LANDSLIDE DETECTION AND SUSCEPTIBILITY MAPPING USING LIDAR AND ARTIFICIAL NEURAL NETWORK MODELING: A CASE STUDY IN GLACIALLY DOMINATED CUYAHOGA RIVER VALLEY, OHIO. Graduate College of Bowling Green State University.
Pradhan, B., Lee, S. (2009). Landslide risk analysis using artificial neural network model focusing on different training sites. International Journal of Physical Sciences, 4(1), 001-015.
Pradhan, B., Lee, S., Buchroithner, M.F. (2010). A GIS-based back-propagation neural network model and its cross-application and validation for landslide susceptibility analyses. Computers, Environment and Urban Systems, 34, 216-235.
Zhang, P., Lv, Z., Gao, L., Huang, L. (2010). A New Framework of the Unsupervised Classification for High-Resolution Remote Sensing Image. TELKOMNIKA, 10, 1746-1755.
Heermann, P.D., Khazenie, N. (1992). Classification of Multispectral Remote Sensing Data Using a Back-Propagation Neural Network. IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 30, 81-88.
Chen, H., Zeng, Z. (2012). Deformation Prediction of Landslide Based on Improved Back-propagation Neural Network. Cognitive Computation, 5(1), 56-62.
Pradhan, B., Lee, S. (2010). Landslide susceptibility assessment and factor effect analysis: backpropagation artificial neural networks and their comparison with frequency ratio and bivariate logistic regression modelling Biswajeet Pradhan. Environmental Modelling & Software, 25, 747-759.
Neaupane, K.M., Achet, S.H. (2004). Use of backpropagation neural network for landslide monitoring: a case study in the higher Himalaya. Engineering Geology, 74, 213-226.
Yu, B., Chen, F. (2017). A new technique for landslide mapping from a large-scale remote sensed image: A case study of Central Nepal. Computers & Geosciences, 100, 115-124.
Manconi, A., Casu, F., Ardizzone, F., Bonano, M., De Luca, C., Gueguen, E., Marchesini, I., Parise, M., Vennari, C., Lanari, R., Guzzetti, F. (2014). Brief Communication: Rapid mapping of landslide events: the 3 December 2013 Montescaglioso landslide, Italy. Natural Hazards and Earth System Sciences, 14(7), 1835-1841.
Voigt, S., Giulio-Tonolo, F., Lyons, J., Kučera, J., Jones, B., Schneiderhan, T., Platzeck, G., Kaku, K., Hazarika, M.K., Czaran, L., Li, S., Pedersen, W., James, G.K., Proy, C., Muthike, D.M., Bequignon, J., Guha-Sapir, D. (2016). Global trends in satellite-based emergency mapping. Science, 353(6296), 247-252.
Hoffmann, R., Reulke, R. (2008). Aspects of Standardization of Sensor and Data Fusion of Remote Sensing Data. ISPRS 2008 Congress, 41-46.
Wu, M.C., Chen, K.S. (2008). Fusion of SPOT and SAR Images for Land Cover Classification. Journal of Photogrammetry and Remote Sensing, 12, 59-72.
Hall-Beyer, M. (2017). GLCM TEXTURE: A TUTORIAL. University of Calgary.
Hölbling, D., Füreder, P., Antolini, F., Cigna, F., Casagli, N., Lang, S. (2012). A Semi-Automated Object-Based Approach for Landslide Detection Validated by Persistent Scatterer Interferometry Measures and Landslide Inventories. Remote Sensing, 4(5), 1310-1336.
Liu, D., Xia, F. (2010). Assessing object-based classification: advantages and limitations. Remote Sensing Letters, 1:4, 187-194.
Arvor, D., Durieux, L., Andrés, S., Laporte, M.A. (2010). Advances in Geographic Object-Based Image Analysis with ontologies: A review of main contributions and limitations from a remote sensing perspective. ISPRS Journal of Photogrammetry and Remote Sensing, 82, 125-137.
Hölbling, D., Friedl, B., Eisank, C. (2015). An object-based approach for semi-automated landslide change detection and attribution of changes to landslide classes in northern Taiwan. Earth Science Informatics, 8(2), 327-335.
Dronova, I. (2015). Object-Based Image Analysis in Wetland Research: A Review. remote sensing, 7, 6380-6413.
Wistrand, G.M. (2016). Investigating the potential of objectbased image analysis to identify tree avenues in high resolution aerial imagery and lidar data. Department of Physical Geography and Ecosystem Science, Lund University.
Pradhan, B., Alsaleh, A. (2017). A Supervised Object-Based Detection of Landslides and Man-Made Slopes Using Airborne Laser Scanning Data. Laser Scanning Applications in Landslide Assessment, 23-50.
Blaschke, T., Hay, G.J., Kelly, M., Lang, S., Hofmann, P., Addink, E., Feitosa, R.Q., Meer, F.V.D., Werff, H.V.D., Coillie, F.V., Tiede D. (2014). Geographic Object-Based Image Analysis – Towards a new paradigm. ISPRS Journal of Photogrammetry and Remote Sensing, 87, 180-191.
Al-doski, J., Mansorl, S.B., Shafri, H.Z.M. (2013). Image Classification in Remote Sensing. Journal of Environment and Earth Science, 3, 141-147.
Ma, L., Li, M., Ma, X., Cheng, L., Du, P., Liu, Y. (2017). A review of supervised object-based land-cover image classification. ISPRS Journal of Photogrammetry and Remote Sensing, 130, 277-293.
Blaschke, T., Lang, S., Hay, G.J. (2008). Object-Based Image Analysis. Spatial Concepts for Knowledge-Driven Remote Sensing Applications.
Blaschke, T., Strobl, J. (2001). What’s wrong with pixels? Some recent developments interfacing remote sensing and GIS. INTERFACING REMOTE SENSING AND GIS, 12-17.
Blaschke, T. (2010). Object based image analysis for remote sensing. ISPRS Journal of Photogrammetry and Remote Sensing, 65, 2-16.
Lai, J.S. (2017). Improving Regional Landslide Susceptibility Assessments by Integrating Geo-spatial Data and Data Mining Algorithms. Doctoral Dissertation, Department of Civil Engineering, National Central University.
Haralick, R.M., Shanmugam, K., Dinstein, I. (1973). Textural Features for Image Classification. IEEE Transactions on Systems, Men and Cybernetics, 6, 610-621.
Synthetic Aperture Radar Slant-range distortion. Retrieved from http://www.radartutorial.eu/20.airborne/ab07.en.html
Kaohsiung Climate, Urban Development Bureau, Kaohsiung City Government. Retrieved from https://www.kcg.gov.tw/EN/cp.aspx?n=4892E8B8F5C0E174
姜壽浩,2016。崩塌地幾何形貌分析方法之建立。行政院農業委員會水土保持局報告書,3-51。
姜壽浩、莊詠婷,2017。應用Sentinel-1合成孔徑雷達影像對舊有崩塌進行再發性評估。行政院農業委員會水土保持局報告書,3-62。
賴哲儇,2009。高光譜影像立方體於特徵空間之三維紋理計算。國立中央大學土木工程研究所碩士論文,4-16。
民政司、社會司,2009。莫拉克颱風災害應變處置報告第74報。中央災害應變中心報告書,1-5。
廖志中,潘以文,李國維,王慧蓉,康耿豪,簡翊文,鄭又珍,李膺讚、林貴崑,2017,大規模崩塌潛勢區的調查與監測。Taiwan Forestry Journal,3-12。
|