博碩士論文 105323093 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:67 、訪客IP:18.119.102.149
姓名 徐暘(Hsu Yang)  查詢紙本館藏   畢業系所 機械工程學系
論文名稱
(Kinematic Optimization of a Reconfigurable Spherical Parallel Mechanism for Robotic Assisted Craniotomy)
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 開顱為一種手術方法,藉由此方法進入患者的大腦,此論文也介紹了神經外科手術所用的專門開顱路徑。現今,大部分用於開顱手術的器具都是半自動的,與舊型的開顱器具相比,現在的型態可以提供更高級別的安全性,然而,使用時還是存在一些風險並來自操作員(疲勞、震動或其他運動等),在接下來的文獻中會說明幾種用於開顱之機器人系統,但是大多數的機器人系統對於機構運動學的關注甚少。
由於開顱手術器具之應用包含遠程中心點,且此點沒有物理旋轉關節(Remote Center of Motion, RCM),所以採用三個自由度的球型並聯機構來操控手術鑽頭,藉由調整此機構的基礎配置以觀察其性能之改變,例如工作空間或靈活性,性能改變可研究可調整之球型並聯機構的運動學,以建立重構參數與機構特性之間的關係,藉由上述之運動學,並對新型機構進行最佳化且討論此結果。對收集到的鑽顱軌跡是用於評估最佳化結果的一個指標,然後與舊型的球型並聯機構進行對照,顯示兩種機構對靈活性的貢獻,最後,介紹機械設計概念來實現重構球型並聯機構所引進的配置。
摘要(英) The craniotomy is a surgical task that is required to allow access to the patient’s brain. It consists in using neurosurgical drills to open a path through the skull. Today, most surgical tools dedicated to craniotomy are semi-automatic. This feature can provide a higher level of safety compared to fully classical tool. However, there are still a risk coming from the motion of a Human operator (fatigue, shacking, recall motion, etc.). Several robotic systems for craniotomy has been reported in the literature but most of them demonstrate too little concern to the kinematic requirement of the task. As this medical application requires a Remote Center of motion, the 3-RRR Spherical Parallel Mechanism (SPM) is proposed to manipulate the surgical drill. The mechanism can adjust the configuration of its base to improve its performances, such as workspace and dexterity. The kinematic of a new Reconfigurable SPM (RSPM) is studied to establish the relationship between this reconfigurable parameter and the mechanism characteristics. A series of motion capture experiments on Human cadavers have allowed collecting the kinematic data of the surgical drill during craniotomy. Based on these data and on the kinematic analysis of the mechanism, the optimization of the RSPM is performed. The drill motion trajectories are used to evaluate the behavior of the optimized mechanism. It is then compared to the classical SPM with classical trihedral base, showing the contribution of the new reconfiguration variable on the mechanism dexterity. Finally, a mechanical design concept is introduced to implement this reconfiguration feature to the RSPM.
關鍵字(中) ★ 開顱手術
★ 遠程中心點
★ 可調整之球型並聯機構
★ 最佳化
關鍵字(英) ★ Craniotomy
★ Spherical Parallel Mechanism
★ Reconfigurable Mechanism
★ Optimization
論文目次 Chinese Abstract i
English Abstract ii
Acknowledgments iii
Table of Content iv
List of Figures vi
List of Tables viii
Explanation of Symbols ix
1 Introduction 1
1-1 Presentation of Craniotomy 1
1-2 Literature Review on Craniotomy Robots 2
1-3 Mechanical Architectures for Remote Center of Motion 3
1-4 Reconfigurable Mechanisms 7
1-5 Literature Review Analysis and Research objectives 8
2 Specification analysis for Craniotomy 11
2-1 Experimental Protocol 11
2-2 Kinematic Results and Specifications 12
3 Kinematic analysis of the Reconfigurable Spherical Parallel Mechanism 16
3-1 Presentation of the Classical Spherical Parallel Mechanism 16
3-2 New Parameter Definition and Kinematic Model 17
3-3 Workspace of the Reconfigurable Spherical Parallel Mechanism 19
3-4 Kinematic Performance of the Re-Configurable Spherical Parallel Mechanism 29
4 Optimization Process of RSPM for Craniotomy Application 34
4-1 Optimization Problem Formulation 34
4-1-1 Workspace 34
4-1-2 Architectural compactness 35
4-1-3 Dexterity 36
4-2 Optimization Method and Results 37
4-3 Behavior on The Optimum Mechanism 40
4-4 Comparison with Optimum and Classical Mechanism 43
5 Manipulator Design 48
5-1 Design of the RCM mechanism 48
5-2 Design of the manipulator base for craniotomy 50
6 Conclusion 53
Reference 54
Appendix A 59
Appendix B 67
參考文獻 [1] Bast, P., Popovic, A., Wu, T., Heger, S., Engelhardt, M., Lauer, W., Radermacher, K., Schmieder, K., “Robot and Computer-assisted Craniotomy: resection planning, implant modelling and robot safety,” International Journal of Medical Robotics and Computer Assisted Surgery, 2006, 2, pp. 168-178.
[2] Hsiao, M.-H., Kuo, C.-H., 2012, “A Review to the Powered Drilling Devices for Craniotomy,” Journal of Medical Devices, 6(1), pp. 017557.
[3] Bofinger, G., Wolfle, W., 1982, “Skull Trepanation Drill,” U.S. Patent No. 4,319,577, Washington, DC: U.S. Patent and Trademark Office.
[4] Ahola, J. J., Harris, D. G., 1999, “Blade Guard for a Surgical Tool,” U.S. Patent No. 6,001,115, Washington, DC: U.S. Patent and Trademark Office.
[5] Burghart, C., Raczkowsky, J., Rembold, U., Wörn, H., 1998, “Robot Cell for Craniofacial Surgery,” Proceedings of the 24th Annual Conference of the IEEE Industrial Electronics Society, Aachen, Germany, 31 August-4 September, pp. 2506-2511.
[6] Sim, C., Ng, W. S., Teo, M. Y., Loh, Y. C., Yeo, T. T., 2001, “Image-Guided Manipulator Compliant Surgical Planning Methodology for Robotic Skull-Base Surgery,” International Workshop on Medical Imaging and Augmented Reality, Shatin, Hong Kong, China, 10-12 June, pp. 26-29.
[7] Federspil, P. A., Geisthoff, U. W., Henrich, D., Plinkert, P. K., 2003, “Development of the First Force-Controlled Robot for Otoneurosurgery,” Laryngoscope, 113(3), pp. 465-471.
[8] Korb, W., Engel, D., Boesecke, R., Eggers, G., Kotrikova, B., Marmulla, R., Raczkowsky, J., Wörn, H., Mühling, J., Hassfeld, S., 2003, “Development and First Patient Trial of a Surgical Robot for Complex Trajectory Milling,” Computer Aided Surgery, 8(5), pp. 247-256.
[9] Weimin, S., Jason, G., Yanjun, S., 2006, “Using Tele-Robotic Skull Drill for Neurosurgical Applications,” Proceedings of the IEEE International Conference on Mechatronics and Automation, Luoyang, China, 25-28 June, pp. 334-338.
[10] Tsai, T. C., Hsu, Y. L., 2007, “Development of a Parallel Surgical Robot with Automatic Bone Drilling Carriage for Stereotactic Neurosurgery,” Biomedical Engineering: Applications, Basis and Communications, 19(4), pp. 269-277.
[11] Matinfar, M., Baird, C., Batouli, A., Clatterbuck, R., Kazanzides, P., 2007, “Robot-Assisted Skull Base Surgery,” Proceedings of the IEEE/RSJ International Conference on Intelligent Robots and Systems, San Diego, CA, USA, 29 October-2 November, pp. 865-870.
[12] Cunha-Cruz, V., Follmann, A., Popovic, A., Bast, P., Wu, T., Heger, S., Engelhardt, M., Schmieder, K., Radermacher, K., 2010, “Robot- and computer-assisted craniotomy (CRANIO): from active systems to synergistic man-machine interaction,” Proceedings of the Institution of Mechanical Engineers, Part H: Journal of Engineering in Medicine, 224(3), pp. 441-452.
[13] Kobler, J. P., Kotlarski, J., Öltjen, J., Baron, S., Ortmaier, T., 2012, “Design and Analysis of a Head-Mounted Parallel Kinematic Device for Skull Surgery,” International Journal of Computer Assisted Radiology Surgery, 7(1), pp. 137-149.
[14] Li, G.-K., Essomba, T., Wu, C.-T., Lee, S-T., 2016, “Kinematic design and optimization of a novel dual-orthogonal remote center-of-motion mechanism for craniotomy,” Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science, 231(6), pp. 1129-1145.
[15] Essomba T., Wu, C.-T., Lee, S.-T., Kuo, C.-H., 2016, “Mechanical Design of a Craniotomy Robotic Manipulator Based on Optimal Kinematic and Force Performance,” Robotics and Mechatronics, Mechanisms and Machine Science series, 37, pp. 191-198.
[16] Dehghani, M., Moghadam, M.M., Torabi, P., 2018, “Analysis, optimization and prototyping of a parallel RCM mechanism of a surgical robot for craniotomy surgery”, Industrial Robot: An International Journal, 45(1), pp. 78-88.
[17] Kuo, C.-H., Dai, J.-S., 2009, “Robotics for Minimally Invasive Surgery: A Historical Review from the Perspective of Kinematics,” International Symposium on History of Machines and Mechanisms, pp. 337-354.
[18] Ghodoussi, M., Butner, S.E., Wang, Y., 2002, “Robotic Surgery - The Transatlantic Case,” Proceedings of IEEE International Conference on Robotics and Automation, 2, pp. 1882–1888, Washington DC, USA.
[19] Sanchez, D., Black, M., Hammond, S., 2002, “A Pivot Point Arm for a Robotic System used to perform a Surgical Procedure,” European Patent No. 1254642.
[20] Kim, D., Kobayashi, E., Dohi, T., Sakuma, I., 2002, “A new compact MR-compatible surgical manipulator for minimally invasive liver surgery,” International Conference on Medical Image Computing and Computer-Assisted Intervention - MICCAI, Vol. 2488. Springer, pp. 99-106, Berlin, Heidelberg.
[21] Harris, S.J., Arambula-Cosio, F., Mei, Q., Hibberd, R.D., Davies, B.L., Wickham, J.E.A., Nathan, M.S., Kundu, B., 1997, “The Probot—an active robot for prostate resection,” Proceedings of the Institution of Mechanical Engineers, Part H: Journal of Engineering in Medicine, 211(4), pp. 317-325.
[22] Masamune, K., Kobayashi, E., Masutani, Y., Suzuki, M., Dohi, T., Iseki, H., Takakura, K., 1995, “Development of an MRI-Compatible Needle Insertion Manipulator for Stereotactic Neurosurgery,” Journal of Image Guided Surgery, 1(4), pp. 242-248.
[23] Kang, H., Wen, J.T., 2001, “Robotic assistants aid surgeons during minimally invasive procedures,” IEEE Engineering in Medicine and Biology Magazine, 20(1), pp. 94-104.
[24] Zong, G., Pei, V., Yu, J., Bi, S., 2008, “Classification and Type Synthesis of 1-DoF Remote Center of Motion Mechanisms,” Mechanism and Machine Theory, 43(12), pp. 1585-1595.
[25] Taylor, R.H., Funda, J., Larose, D., Treat, M., 1992, “A telerobotic system for augmentation of endoscopic surgery,” Proceedings of IEEE Engineering in Medicine and Biology Society, 3, pp. 1054–1056, Paris, France.
[26] Salcudean, S.E., Zhu, W.H., Abolmaesumi, P., Bachmann, S., Lawrence, P.D., 2000, “A robot system for medical ultrasound,” Robotics Research – International Symposium, 9, pp.195-202.
[27] Rosen, J., Brown, J.D., Chang, L., Barreca, M., Sinanan, M., Hannaford, B., 2002, “The BlueDRAGON - A System for Measuring the Kinematics and the Dynamics of Minimally Invasive Surgical Tools In-Vivo,” Proceedings of IEEE International Conference on Robotics and Automation, 2, pp. 1876-1881, Washington DC, USA.
[28] Taghirad, H.D., 2012, “Parallel robot, mechanism and control,” International Standard Book Number: 978-1-4665-5576-1 (Hardback).
[29] Li, J., Zhang, G., Muller, A., Wang, S., 2013, “A Family of Remote Center of Motion Mechanisms Based on Intersecting Motion Planes,” ASME Journal of Mechanical Design, 135(9), 091009.
[30] Li, J., Xing, Y., Liang, K., Wang, S., 2015, “Kinematic Design of a Novel Spatial Remote Center-of-Motion Mechanism for Minimally Invasive Surgical Robot,” ASME Journal of Medical Devices, 9(1), 011003.
[31] Beira, R., Santos-Carreras, L., Rognini, G., Bleuler, H., Clavel, R., 2011, “Dionis: A novel remote-center-of-motion parallel manipulator for Minimally Invasive Surgery,” Applied Bionics and Biomechanics, 8(2), pp. 191–208.
[32] Gosselin, C., Hamel, J., 1994, “The Agile Eye: A High-Performance Three-Degree of Freedom Camera-Orienting Device,” Proceedings of IEEE International Conference on Robotics and Automation, pp. 781-786, San Diego, USA.
[33] Chaker, A., Mlika, A., Laribi, M.A., Romdhane, L., Zeghloul, S., 2012, “Synthesis of spherical parallel manipulator for dexterous medical task,” Frontiers of Mechanical Engineering, 7(2), pp.150-162.
[34] Xi, F., Xu, Y., Xiong, G., 2006, “Design and analysis of a re-configurable parallel robot,” Mechanism and Machine Theory, 41(2), pp. 191-211.
[35] Yim M., Zhang, Y., Duff, D., 2002, “Modular robots,” Feature article, IEEE Spectrum, 39(2), p. 30-34.
[36] Zhang, X., Zhang, X., 2016, “A comparative study of planar 3-RRR and 4-RRR mechanisms with joint clearances,” Robotics and Computer-Integrated Manufacturing, 40, pp. 24-33.
[37] Azulay, H., Mahmoodi, M., Zhao, R., Mills, J.K., Benhabib, B., 2014, “Comparative analysis of a new 3-PPRS parallel kinematic mechanism,” Robotics and Computer-Integrated Manufacturing, 30, pp. 369-378.
[38] Gan, D., Dai, J.S., Sanevirane, L., 2013, “Reconfigurability and unified kinematics modeling of a 3rTPS metamorphic parallel mechanism with perpendicular constraint screws,” Robotics and Computer-Integrated Manufacturing, 29, pp. 131-128.
[39] Huang, G., Guo, S., Zhang, D., Qu, H., Tang, H., 2018, “Kinematic analysis and multi-objective optimization of a new reconfigurable parallel mechanism with high stiffness,” Robotica, 36(2), pp. 187-203.
[40] Kang, X., Dai, J. S., 2019, “Relevance and Transferability for Parallel Mechanisms with Reconfigurable Platforms,” Journal of Mechanisms and Robotics, 11(3), 031012.
[41] Kobler, J. P., Kotlarski, J., Öltjen, J., Baron, S., Ortmaier, T., 2012, “Design and Analysis of a Head-Mounted Parallel Kinematic Device for Skull Surgery,” International Journal of Computer Assisted Radiology Surgery, 7(1), pp. 137-149.
[42] Essomba, T., Laribi, M.A., Zeghloul, S. Poisson, G., 2016, “Optimal synthesis of a spherical parallel mechanism for medical application,” Robotica, Vol. 34(3), pp. 671-688.
[43] Gosselin, C., Angeles, J., 1991, “A global performance index for the kinematic optimisation of robotic manipulators,” ASME Journal of Mechanical Design, 113(3), pp. 220–226.
指導教授 伊泰龍 賴景義(Térence Essomba Lai Jiing Yih) 審核日期 2019-7-12
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明