參考文獻 |
參考文獻
[1] J. Chang, M. Dommer, C. Chang, L. Linn, Piezoelectric nanofibers for energy scavenging applications, Nano Energy, 2012, 1, 356-371
[2] Dr. K. Dong, Dr. Z. Wu, Dr. J. Deng, A. C. Wang, H. Zou, C. Chen, Z. L. Wang. A Stretchable Yarn Embedded Triboelectric Nanogenerator as Electronic Skin for Biomechanical Energy Harvesting and Multifunctional Pressure Sensing Adv. Mater. 2018, 1804944
[3] C. Larson, B. Peele, S. Li, S. Robinson, M. Totaro, L. Beccai, B. Mazzolai, R. Shepherd, Highly stretchable electroluminescent skin for optical signaling and tactile sensing. Science 2016, 351, 1071.
[4] Q. Sun, W. Seung, B. J. Kim, S. Seo, S. W. Kim, J. H. Cho, Active Matrix Electronic Skin Strain Sensor Based on Piezopotential-Powered Graphene Transistors. Adv. Mater. 2015, 27, 3411.
[5] Z.L. Wang, J. Song, Piezoelectric Nanogenerators Based on Zinc Oxide Nanowire Arrays. Science, 312 ,2006, 242–246.
[6] G. Zhu, W. Q. Yang, T. Zhang, Q. Jing, J. Chen, Y. S. Zhou, P. Bai, Z. L. Wang, Self-powered, ultrasensitive, flexible tactile sensors based on contact electrification. Nano Lett. 2014, 14, 3208.
[7] X. D. Wang, J. H. Song, J. Liu, Z. L. Wang, Direct-current nanogenerator driven by ultrasonic waves., Science, 2007, 316, 102.
[8] C. Chang, V. H. Tran, J. Wang, Y. Fuh, L. Lin, Direct-Write Piezoelectric Polymeric Nanogenerator with High Energy Conversion Efficiency, Nano Lett., 2010, 10, 726.
[9] D. Choi, et al., Fully Rollable Transparent Nanogenerators Based on Graphene Electrodes, Adv. Mater., 2010, 22, 2187.
[10] S. Xu, Y. Qin, C. Xu, Y. G. Wei, R. Yang, Z. L. Wang, Self-powered nanowire devices., Nat. Nanotechnol., 2010, 5, 367.
[11] Y. Qin, X. D. Wang, Z. L. Wang, Microfiber-Nanowire Hybrid Structure for Energy Scavenging., Nature, 2008, 451, 809.
[12] Y. Qin, et al., Nano Lett., 2010, 10, 34.
[13] R. Yang, Y. Qin, L. Dai, Z. L. Wang, Power generation with laterally packaged piezoelectric fine wires., Nat. Nanotechnol., 2009, 34.
[14] X. H, et al., Adv. Funct. Mater., 2017, 27, 4, 1601255.
[15] Y. C. Lai, et al., Single-Thread-Based Wearable and Highly Stretchable Triboelectric Nanogenerators and Their Applications in Cloth-Based Self-Powered Human-Interactive and Biomedical Sensing, Adv. Funct. Mater., 2017, 27, 1, 1604462.
[16] S. W. Chen, et al., An Ultrathin Flexible Single‐Electrode Triboelectric‐Nanogenerator for Mechanical Energy Harvesting and Instantaneous Force Sensing, Adv. Energy Mater., 2017, 7, 1, 1601255.
[17] F. L. Zhou, R.H. Gong, I. Porat, J. Appl. Polym. Sci., 2010, 115, 2591.
[18] Y. K. Fuh, B. S. Wang, C. Yu. Tsai, Self-Powered Pressure Sensor with fully encapsulated 3D printed wavy substrate and highly-aligned piezoelectric fibers array, Scientific Report, 2017, SREP-16-50149B.
[19] J. D. Schiffman, C. L. Schauer, Cross-linking chitosan nanofibers., Biomacromolecules, 2007, 8, 2665.
[20] C. Chang, K. Limkrailassiri, L.W. Lin, Photoemission Study of Sm Overlayers Deposited on Nb, Appl. Phys. Lett., 2008, 93, 123111.
[21] Y. K. Fuh, B. S. Wang, Near field sequentially electrospun three dimensional piezoelectric fibers arrays for self-powered sensors of human gesture recognition, Nano Energy, 2016, 30, 677-683.
[22] J. Chang, L. Lin, Transducers, 2011,747.
[23] Y. K. Fuh, P. C. Chen, Z. M. Huang, H. C. Ho, Self-powered sensing elements based on direct-write, highly flexible piezoelectric polymeric nano/microfibers, Nano Energy 2015, 11, 671.
[24] Y. K. Fuh, S. C. Lee, C. Y. Tsai, Application of Highly flexible self-powered sensors via sequentially deposited piezoelectric fibers on printed circuit board for wearable electronics devices, Sensors and Actautors - A: Physical, 2017, 268, 148-154.
[25] F. Gers, N. Schraudolph, and J. Schmidhuber, Learning Precise Timing with LSTM Recurrent Networks. Journal of Machine Learning Research, vol. 3, pp. 115–143, 2002.
[26] P. Molchanov, S. Gupta, K. Kim, J. Kautz, 2015 IEEE Conference on Computer Vision and Pattern Recognition Workshops (CVPRW), 2015, Page(s): 1 – 7
[27] Y. LeCun, Y. Bengio, G. Hinton, Deep learning. Nature 2015, 521, 436-444.
[28] G. Q. Zhao, G. H. Zhang, Q. Q. Ge, X. Y. Liu, PHM Conf. Research advances in fault diagnosis and prognostic based on deep learning, Chengdu, China, October 2016.
[29] E. Tsironi, P. Barros , S. Wermter , Gesture recognition with a convolutional long short-term memory recurrent neural network, in: Proceedings of the TwentyFourth European Symposium on Artifical Neural Networks, Computational Intelligence and Machine Learning, 2016, pp. 213–218 .
[30] J. Donahue, L.A. Hendricks, S. Guadarrama, M. Rohrbach, S. Venugopalan, T. Darrell, K. Saenko, Long-term recurrent convolutional networks for visual recognition and description, in: Proceeding of the 2015 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), 2015, pp. 2625–2634,
[31] C. B. Han, C. Zhang, W. Tang, X. H. Li, Z. L. Wang, High power triboelectric nanogenerator based on printed circuit board (PCB) technology, Nano Res. ,2015, 722-730.
[32] S. Priya, Modeling of electric energy harvesting using piezoelectric windmill, Appl. Phys. Lett., 2005,87, 184101.
[33] G. Zhu, R. Yang, S. Wang, Z. L. Wang, Flexible High-Output Nanogenerator Based on Lateral ZnO Nanowire Array, Nano Lett., 2010, 10, 3151.
[34] J. Chen, G. Zhu, J. Yang, Q. Jing, P. Bai, W. Yang, X. Qi, Y. Su, Z. L. Wang, Personalized Keystroke Dynamics for Self-Powered Human–Machine Interfacing, ACS Nano, 2015, 9, 105-116.
[35] X. Pu, H. Guo, J. Chen, X. Wang, Y. Xi, C. Hu, Z. L. Wang, Eye motion triggered self-powered mechnosensational communication system using triboelectric nanogenerator , Sci. Adv., 2017, 3, e1700694.
[36] Y. K. Fuh, S.Y. Chen, C. S. Yeh, Massively parallel aligned microfibers-based harvester deposited via in situ, oriented poled near-field electrospinning, Applied Physics Letters, 2013, 103, 3, 033014.
[37] Y. K. Fuh, J. C. Ye, P. C. Chen, H. C. Ho, Z. M. Huang, A hybrid energy harvester consisting of piezoelectric fibers with largely enhanced 20V for wearable and muscle-driven applications, ACS Applied Materials & Interfaces, 2015, 7, 16923.
[38] Y.K. Fuh, P. C. Chen, Z. M. Huang, All-direction energy harvester based on nano/micro fibers as flexible and stretchable sensors for human motion detection, RSC Advances, 2015, 5, 67787.
[39] Y. K. Fuh, C. S. Yeh, P. C. Chen, Z. M. Huang, A highly flexible and substrate-independent self-powered deformation sensor based on massively aligned piezoelectric nano-/microfibers, Journal of Materials Chemistry A, 2014, 2, 38, 16101.
[40] T. H. Lee, C. Y. Chen, C. Y. Tsai, Y. K. Fuh, Near-Field Electrospun Piezoelectric Fibers as Sound-Sensing Elements. Polymers, 2018, 10(7): 692.
[41] B. Yu, H. Yu, T. Huang, H. Wang, M. Zhu, A Biomimetic Nanofiber-Based Triboelectric Nanogenerator with an Ultrahigh Transfer Charge Density. Nano Energy, 2018, 464-470
[42] J. Andrew and D. Clarke, “Effect of Electrospinning on the Ferroelectric Phase Content of Polyvinylidene Difluoride Fibers” Langmuir, 2008, 24, pp. 670-672.
[43] S. Chen, K. Yao, F. Tay and L. Chew, “Comparative investigation of the structure and properties of ferroelectric poly(vinylidene fluoride) and poly(vinylidene fluoride–trifluoroethylene) thin films crystallized on substrates”. J. Appl. Polym. Sci, 2010, 116, pp. 3331-3337. |