參考文獻 |
5 References
[1]. K. Huang and J.B. Goodenough, "Solid Oxide Fuel Cell Technology_ Principles, Performance and Operations", 1 ed, Woodhead Publishing & CRC Press, Cambridge, UK & Boca Raton, FL, 2009.
[2]. R. P.O′Hayre, et al., "Fuel cell fundamentals", 2 ed, John Wiley & Sons, Inc., New York, 2006.
[3]. N. Mahato, et al., "Progress in material selection for solid oxide fuel cell technology: A review", Progress in Materials Science, Vol 72, pp. 141-337, 2015.
[4]. N.Q. Minh and T. Takahashi, "Science and Technology of Ceramic Fuel Cells", Elsevier Science, 1995.
[5]. S.C. Singhal and K. Kendall, "High-temperature Solid Oxide Fuel Cells_ Fundamentals, Design and Applications", 1 ed, Elsevier Science, New York, 2003.
[6]. A.B. Stambouli and E. Traversa, "Solid oxide fuel cells (SOFCs): a review of an environmentally clean and efficient source of energy", Renewable and Sustainable Energy Reviews, Vol 6(5), pp. 433-455, 2002.
[7]. S.M. Haile, "Fuel cell materials and components", Acta Materialia, Vol 51(19), pp. 5981-6000, 2003.
[8]. J.M. Andujar and F. Segura, "Fuel cells: History and updating. A walk along two centuries", Renewable & Sustainable Energy Reviews, Vol 13(9), pp. 2309-2322, 2009.
[9]. I. EG&G Technical Services, "Fuel Cell Handbook", U.S. Department of Energy Office of Fossil Energy National Energy Technology Laboratory, Morgantown, West Virginia, 2005.
[10]. M. Ni, "The effect of electrolyte type on performance of solid oxide fuel cells running on hydrocarbon fuels", International Journal of Hydrogen Energy, Vol 38(6), pp. 2846-2858, 2013.
[11]. N.L.R.M. Rashid, et al., "Review on zirconate-cerate-based electrolytes for proton-conducting solid oxide fuel cell", Ceramics International, Vol 45(6), pp. 6605-6615, 2019.
[12]. M. Ni, M.K.H. Leung, and D.Y.C. Leung, "Mathematical Modelling of Proton-Conducting Solid Oxide Fuel Cells and Comparison with Oxygen-Ion-Conducting Counterpart", Fuel Cells, Vol 7(4), pp. 269-278, 2007.
[13]. S. Hossain, et al., "A review on proton conducting electrolytes for clean energy and intermediate temperature-solid oxide fuel cells", Renewable and Sustainable Energy Reviews, Vol 79, pp. 750-764, 2017.
[14]. J.F. Basbus, et al., "A high temperature study on thermodynamic, thermal expansion and electrical properties of BaCe 0.4 Zr 0.4 Y 0.2 O 3−δ proton conductor", Journal of Power Sources, Vol 329, pp. 262-267, 2016.
[15]. M. Hakim, et al., "Enhanced durability of a proton conducting oxide fuel cell with a purified yttrium-doped barium zirconate-cerate electrolyte", Journal of Power Sources, Vol 278, pp. 320-324, 2015.
[16]. P. Sawant, et al., "Synthesis, stability and conductivity of BaCe0.8−xZrxY0.2O3−δ as electrolyte for proton conducting SOFC", International Journal of Hydrogen Energy, Vol 37(4), pp. 3848-3856, 2012.
[17]. R.M. Ormerod, "Solid oxide fuel cells", Chemical Society Reviews, Vol 32(1), pp. 17-28, 2003.
[18]. R. Lan and S. Tao, "Materials for High-Temperature Fuel Cells", Wiley-VCH Verlag GmbH & Co.KgaA, Germany, 2013.
[19]. L. Gui, et al., "Enhanced sinterability and conductivity of BaZr0.3Ce0.5Y0.2O3−δ by addition of bismuth oxide for proton conducting solid oxide fuel cells", Journal of Power Sources, Vol 301, pp. 369-375, 2016.
[20]. T. Ishihara, "Perovskite Oxide for Solid Oxide Fuel Cells", 1 ed, Springer US, Boston, MA, 2009.
[21]. C. Sun, R. Hui, and J. Roller, "Cathode materials for solid oxide fuel cells: a review", Journal of Solid State Electrochemistry, Vol 14(7), pp. 1125-1144, 2009.
[22]. R. Peng, et al., "Cathode processes and materials for solid oxide fuel cells with proton conductors as electrolytes", Journal of Materials Chemistry, Vol 20(30), 2010.
[23]. Likun Pan and G. Zhu, "Perovskite Materials: Synthesis, Characterisation, Properties, and Applications", ExLi4EvA, 2017.
[24]. S.T. Aruna, et al., "Electrospinning in solid oxide fuel cells – A review", Renewable and Sustainable Energy Reviews, Vol 67, pp. 673-682, 2017.
[25]. S. Ramakrishna, et al., "An Introduction to Electrospinning and Nanofibers", World Scientific Publishing Co. Pte. Ltd., Singapore, 2005.
[26]. S. Cavaliere, "Electrospinning for advanced energy and environmental applications", CRC Press, Boca Raton, 2016.
[27]. P.S. Kumar, et al., "Hierarchical electrospun nanofibers for energy harvesting, production and environmental remediation", Energy Environ. Sci., Vol 7(10), pp. 3192-3222, 2014.
[28]. H. Wu, et al., "Electrospinning of ceramic nanofibers: Fabrication, assembly and applications", Journal of Advanced Ceramics, Vol 1(1), pp. 2-23, 2012.
[29]. Y. Chen, et al., "A Highly Efficient and Robust Nanofiber Cathode for Solid Oxide Fuel Cells", Advanced Energy Materials, Vol 7(6), 2017.
[30]. N. Bhardwaj and S.C. Kundu, "Electrospinning: a fascinating fiber fabrication technique", Biotechnol Adv, Vol 28(3), pp. 325-47, 2010.
[31]. N. Nasani, et al., "Synthesis and conductivity of Ba(Ce,Zr,Y)O3−δ electrolytes for PCFCs by new nitrate-free combustion method", International Journal of Hydrogen Energy, Vol 38(20), pp. 8461-8470, 2013.
[32]. J.S. Hardy, et al., "Lattice expansion of LSCF-6428 cathodes measured by in situ XRD during SOFC operation", Journal of Power Sources, Vol 198, pp. 76-82, 2012.
[33]. X. Chen and S.P. Jiang, "Highly active and stable (La0.24Sr0.16Ba0.6)(Co0.5Fe0.44Nb0.06)O3−δ (LSBCFN) cathodes for solid oxide fuel cells prepared by a novel mixing synthesis method", Journal of Materials Chemistry A, Vol 1(15), pp. 4871, 2013.
[34]. S.U. Dubal, et al., "Proton conducting BaCe0.7Zr0.1Y0.2O2.9 thin films by spray deposition for solid oxide fuel cell", Applied Surface Science, Vol 324, pp. 871-876, 2015.
[35]. Y. Yamazaki, R. Hernandez-Sanchez, and S.M. Haile, "High Total Proton Conductivity in Large-Grained Yttrium-Doped Barium Zirconate", Chemistry of Materials, Vol 21(13), pp. 2755-2762, 2009. |