以作者查詢圖書館館藏 、以作者查詢臺灣博碩士 、以作者查詢全國書目 、勘誤回報 、線上人數:95 、訪客IP:18.227.134.133
姓名 葉輝煌(Huei-Huang Yeh) 查詢紙本館藏 畢業系所 營建管理研究所 論文名稱 公共工程的預防式工程界面管理之研究以捷運計畫施工界面的建構為例
(Preventive Interface Management for Complex Capital Projects A Case Study of Mass Rapid Transit Project Construction)相關論文 檔案 [Endnote RIS 格式] [Bibtex 格式] [相關文章] [文章引用] [完整記錄] [館藏目錄] [檢視] [下載]
- 本電子論文使用權限為同意立即開放。
- 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
- 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。
摘要(中) 對落實大型公共工程計畫中數千個潛藏且複雜工程界面的有效管理,一直為營建施工管理層面上所關切與聚焦的重點。近年來,因為類似的基礎建設計畫的複雜性和管理範圍又摻雜入額外的全球化、跨地域間配送和多種工作文化協同作業等需求條件,更增管理層面上的嚴峻挑戰,以及在各相關界面利害者間,滋生眾多不可預見的工程風險。
大眾捷運系統計畫亦屬此類大型公共工程,係由十數種不同種類土建、相關聯的子系統工項與由跨國系統廠商提供專利性的各類機電子、次系統等各類營建工程項目共同組成,在其施工過程的全生命週期中,同樣結合了繁瑣而複雜的工程界面。這些捷運工程項目的設計和建造過程中,也同樣需要在各種不同類型的工程界面間進行複雜的整合過程,包括土木和建築、軌道工程、電梯電扶梯、水電消防、環境控制系統、以及核心電氣與機械系統,這些均是一般大型公共工程項目界面管理上所共同遭遇並急需解方的界面管理議題。因此,此種捷運工程計畫亦最適合做為研發有效界面管理的方法論的範本,並可為其他大型的公共工程計畫所沿用。
傳統上,捷運工程計畫的界面設計整合,僅著重於土建與機電工程子系統間特定界面需求條件的整合程序與施工作業,例如結構機電界面圖或機電系統整合圖的套繪與製作。然而,此種方式並未能將所選定的機電系統規格與指定的土建設計間所有必要的物理性界面,於置入前事先針對有關子系統間相互依存條件上的工程必要性進行評估與篩選。於是當設計完成後,所有必要或非必要的工程界面均被同步置入,而需於施工期間消耗時間與資源進行管理。此類界面若未能預先完整的揭示及適時的管理,必將於施工階段的各界面單位間橫生無數的爭議,而嚴重推遲整體進度,部分爭議甚至可能會延續到營運階段,直接影響到維護或操作程序的效率而降低其整體營運功效。
本研究的目的在以預防性的思維,以串連式的步驟程序,先行建構出一套對捷運工程施工完整而有效的界面管理方案,以為未來擴延並應用於其他具類似複雜界面的公共工程計畫。其核心途徑乃是藉由過往台灣捷運工程的實際施工界面管理的問題與失敗的紀錄為基礎,進行全面而系統性的檢閱以鑑別出一再發生的界面問題的關聯類型統計,而歸納出可於設計與施工階段重複應用的界面管理準則,此包括(1)發展出可重複使用的預防性設計準則,以便在初始設計階段即能先行有效地減少工程界面,(2)就後續的構築階段釐訂高效率的逐步界面管理程序,推動施工中作業的工程界面,以及(3)說明本項方法沿用至其他複雜公共工程之可行性與建議。本研究本論文展示了一種在設計階段即預防性地縮減工程界面與應用於施工管理的新概念,以實現高效的執行和管理目標,並將總體施工時間平均節省37%,從而顯著降低計畫的資源需求。
有關本項預防性的界面設計準則與施工界面管理程序的研究成果,不僅具有讓大型公共工程大幅節省施工時間與資源的管理潛力,同時預防性地減少可避免的工程爭議,對現有工程界面管理的知識體系有所貢獻。
摘要(英) Engineering interface management (EIM) practices have been the focus of construction management concerns to effectively manage thousands of embedded and complicated engineering interfaces in complex capital projects. Recently, management challenges have increased since the complexity and scope of the scale of these infrastructure projects are combined with additional globalization, multiple geographical distribution and coordination among various working cultures with unforeseen construction risks among interfacing stakeholders.
Mass rapid transit (MRT) projects comprise one class of projects. This type of combined construction engineering work, which consists of numerous different trades of civil/architectural, related subworks and patent electrical and mechanical subsystems supplied by global system suppliers, is binding with tedious and complicated engineering interfaces throughout the construction life cycles. The design and construction of these MRT projects requires a sophisticated process of integration among different types of engineering work interfaces, including civil and architectural, track work, escalators/elevators, mechanical/electrical/plumbing, environmental control systems, and core electrical and mechanical systems, in which issues are frequently encountered and required for solutions in the interface management (IM) of traditional capital projects construction. Therefore, this MRT project can serve as the perfect template for developing applicable IM methodology for effectively resolving interfacing issues; it can be extended to other kinds of capital projects.
Traditionally, interface design integration for an MRT project primarily focuses on the integration needs of specific interface requirements among civil, electrical and mechanical (E&M) subsystems, such as the production of structural, electrical and mechanical drawings or combined services drawings and their construction. However, this approach does not pre-evaluate and filter all engineering necessities on subsystems’ interdependencies before considering all necessary physical interfaces between the chosen E&M specifications and designated civil designs. When the designs are completed, all engineering interfaces that are needed or unneeded are embedded and require time and resources to manage during construction. When these interfaces are not thoroughly revealed and preplanned for timely management, they generate countless disputes among project parties in the construction stage and considerably delay the total progress. Some of the conflicting outcomes may further extend their impacts to the operation stage, which induce inefficient maintenance or operation procedures and reduce the total service efficacy.
The objective of this thesis, by taking the proven advantages of the design-build (DB) type of contracting, is to propose a series of stepwise procedures in a preventive scenario for developing a completed and effective IM solution for DB MRT project design and construction, which can be easily extended and reused in other capital projects with similar complex interfaces in the future. Its core methodology is to use all as-built experiences of these IM issues, including failures in Taiwan MRT constructions, as the basis to perform a thorough and systematic review to identify the types of dependencies of recurrent interface issues. These summaries will then be applied to generalize reusable IM criteria for design and construction stages. The criteria include (1) the development of a reusable preventive design criteria to preemptively and effectively minimize the engineering interfaces during the initial design stage; (2) the design of an efficient stepwise IM solution for managing the engineering interface in the construction stage; and (3) the exploration of the potential applicability of this IM methodology to extend to other complex capital projects. This thesis has demonstrated a new way for the preventive IM concept to immediately minimize the project interfaces in the design stage to achieve effective and efficient management performance for significantly reducing the total construction time by an average of 37% and conserve project resources.
The preventive interface design criteria and construction IM procedures of this study contribute to the EIM body of knowledge and demonstrate great potential in reducing construction time and resources, as well as contract disputes for DB capital contracts.
關鍵字(中) ★ 捷運系統
★ 設計及施工契約
★ 捷運工程設計界面整合
★ 界面管理
★ 網狀界面點
★ 預防式界面設計準則
★ 營建管理
★ 契約管理關鍵字(英) ★ Mass rapid transit
★ design-build contract
★ MRT design interface integration
★ interface management
★ interface point network
★ preventive interface design criteria
★ construction management
★ contract management論文目次 Abstract..................................................I
中文摘要(Abstract in Chinese).............................IV
Acknowledgements.........................................VI
Table of Contents.......................................VII
List of Figures...........................................X
List of Tables..........................................XII
Glossary...............................................XIII
Chapter 1 Introduction....................................1
1.1 Background and Motivation.............................1
1.2 Research Objectives...................................4
1.3 Research Scope........................................6
1.4 Research Methodology..................................7
1.5 Thesis Structure......................................9
Chapter 2 Literature Review..............................11
2.1 Project Life Cycle and Engineering Interface.........11
2.2 Past Experience and Interface Management in
Construction.........................................14
2.3 Interface Management under Different Types of
Contract.............................................16
2.4 Summary..............................................18
Chapter 3 Performance Review on the IMS of MRT Project
Construction...................................19
3.1 Data Collection and Analysis Methodology.............19
3.2 Efficacy and Ineffectiveness under Current IMS Scenario .........................................................23
3.3 Root Causes of Schedule Overrun on Past MRT Lines....27
3.4 Summary..............................................28
Chapter 4 Preventive Interface Management Proposal in the
Design Stage...................................29
4.1 Methodology for Interface Management in a Preventive
Design Scenario......................................29
4.2 Identification of Key Design Interfaces from Past MRT
Projects among Main Stakeholders.....................29
4.3 Evaluating IPs’ Logical Relationships and Identifying Types of Recurrent Dependencies..........................35
4.4 Generalizing IM Criteria from IP Interdependencies...36
4.5 Developing the Preventive Interface Design Criteria..37
4.6 Implementation on Real Cases.........................41
4.7 Management Implication...............................57
Chapter 5 Stepwise IM Proposal for Construction and Testing
Stages.........................................59
5.1 IM Methodology for Construction and Testing..........59
5.2 Identification of the Key Construction Interface
Correlation and Work Scope...........................60
5.3 Allocation of Interface Scope Responsibilities and
Criteria Using a Phase Approach......................61
5.4 Preplanning the Interface Work Sequences for the
Construction and T&C Stages..........................64
5.5 Set up Interface Organizations with Veto Authorization
..................................................... 70
5.6 Validation of Real Cases.............................75
5.7 Management Implication...............................78
Chapter 6 Extending Preventive IM Processes to Other Capital
Projects.......................................79
6.1 Comparison Between Large Scale Capital Projects and MRT
Projects.............................................79
6.2 Evaluation for Using the IM Procedure in Other Capital
Projects.............................................80
6.3 Summary..............................................81
Chapter 7 Conclusions and Future Work....................82
7.1 Conclusions..........................................82
7.2 Contributions........................................84
7.3 Limitations or Conditions............................85
7.4 Recommendation for Future Work.......................86
References ..............................................87
Appendix A Summary of As-Built Level 1 and 2 Interface WBS
for an MRT Project...........................93
Appendix B Subsystem Interfaces Scope Allocation Matrix
.............................................96
Appendix C Taipei MRT Line Project Handover Criteria for
Interfacing Regions..........................97
Section 1. Station Handover..............................97
Section 2. Criteria of Completed Guideway Handover......100
Section 3. Criteria of Power Distribution Substation
Handover.....................................102
Section 4. Bulk Power System Substation Handover........103
Section 5. Depot Facilities Handover....................104
Section 6 General Notes.................................104
Appendix D Demonstration of Predefined Interface Activity
Sequences...................................106
Construction Sequences and Flow Chart of Interface
Scope Items...................................106
(1) General Interface Sequence for A Building Structure 106
(2) Interface Activity Sequence and Logic Among Different Cooperative IPs of Subsystems and Subworks..............106
T&C Sequences and Flow Chart of Interface Scope Items...110
(3) Interface Work Sequence of Power-On and System Testing
Procedures..........................................110參考文獻 1. Ahn, S., Shokri, S., Lee, S., Haas, C., and Haas, R. (2016). “Exploratory study on the effectiveness of interface-management practices in dealing with project complexity in large-scale engineering and construction projects.” Journal of Management in Engineering, 10.1061/(ASCE)ME. 1943-5479.0000488, 04016039.
2. Al-Hammad, A.-M. (2000). “Common interface problems among various construction parties.” Journal of Performance of Constructed Facilities, 14(2), 71-74, ASCE.
3.Archibald, Russell D. (2003). “Managing high-technology programs and projects.” 3rd ed. New York; New York; Wiley.
4. Ayas, K. (1997). “Integrating corporate learning with project management.” International Journal of Production Economics, 51, 59-67.
5. Bachy, G., and Hameri, A. P. (1997). “What to be implemented at the early stage of a large-scale project.” International Journal of Project Management, 15(4), 211-218.
6. Bombardier Inc. (2005). “Commissioning Program Plan, p. 40,” Electrical and mechanical systems contract CB370 under section contract CB410 of Taipei Muzha extension (Neihu) Line of Taipei Mass Rapid Transit System, Taipei, Taiwan.
7. Bombardier Inc. (2006). “Interface Management Plan,” Electrical and mechanical systems contract CB370 under section contract CB410 of Taipei Muzha extension (Neihu) Line of Taipei Mass Rapid Transit System, Taipei, Taiwan.
8. Brotherton, Shella A., Fried, Robert T., and Norman, Eric S. (2008). “Applying the work breakdown structure to the project management lifecycle.” Proc. of the 2008 PMI Global Congress, Denver, USA. 1-15.
9. Chang, Andrew S., Shen, Fang-Ying, and Ibbs, William. (2010). “Design and construction coordination problems and planning for design-build project new users.” Canadian Journal of Civil Engineering, (37), 1525-1534.
Chen, M. (2012) “Railway core system engineering interface design integration study.” Mater thesis, National Central University, Taoyuan, Taiwan. (in Chinese).
10. Chen, Q., Jin, Z., Xia, B., Wu, P., and Skitmore, M. (2016). “Time and cost performance of design-build projects.” Journal of Construction Engineering and Management, 10.1061/(ASCE)1943-7862 (2016), 142(2): 04015074.
11. Chen, Q., Reichard, G., and Beliveau, Y. (2007). “Interface management - a facilitator of lean construction and agile project management.” Proceedings of 5th Annual Conference International Group for Lean Construction (IGLC-15), Michigan, USA, 57-66.
12. Chiu, C.-H. (2008). “The study of how to solving the construction interface problems on mass rapid transportation engineering - Taipei Metro (CD550) project as example.” Master thesis, National Central Univ., Taoyuan, Taiwan. (in Chinese).
13. Chua, D. K. H., and Godinot, M. (2006). “Use of a WBS matrix to improve interface management in projects.” Journal of Construction Engineering and Management, 10.1061/(ASCE)0733-9364 (2006), 132:1(67), 67-79.
14. Dai, Y. Z. (2005). “The study of management methods on interfaces between E&M and civil works during detail design stage in KMRT.” Master thesis, Department of Civil Engineering, National Cheng Kung University, Tainan, Taiwan. (in Chinese).
15. Dispute Resolution Board Foundation (DRBF). (2007). “DRBF practices and procedures.” http://www.drb.org.
16. Fellows, R., and A. M. M. Liu. (2012). “Managing organizational interfaces in engineering construction projects: Addressing fragmentation and boundary issues across multiple interfaces.” Construction Management and Economics, 30 (8): 653-71.
17. Gibson, G. E, Migliaccio, G. C., and O’Connor, J.T. (2008). “Changing Project Delivery Strategy: An Implementation Framework.” Public Works Management & Policy, 12(3), 483-502.
18. Gil, N., Tommelein, I. D., Kirkendall, R. L., and Ballard, G. (2004). “Theoretical comparison of alternative delivery systems for projects in unpredictable environments.” Construction Management and Economics, 22(5), 495-508.
19. Healy, P. (1997). “Chapter 12 – Interfaces.” Project management: Getting the job done on time and in budget, Butterworth-Heinemann, Port Melbourne, Australia, 267-278.
20. Hsu, T.-C., Granese, P., and Chien, M. (2009). “Project management of the Luzhou line’s E&M systems - from the contractor’s and client’s point of view.” Rapid Transit Systems and Technology (Taipei), (41), 175-186. (in Chinese).
21. Huang, Chin-Tien. (2008). “The study of MRT track project interface problems in knowledge management.” Ph.D. thesis, Dept. of Civil Engineering, National Central University, Jhongli, Taoyuan, Taiwan. (in Chinese).
22. Huang, R.-Y., Huang, C.-T., Ku, W.-H. (2008). “Factor analysis of interface problems among construction parties-case study of MRT.” Journal of Marine Science and Technology, Vol. 16, No. 1, 52 pp. 52-63.
23. Ibbs, C. W., Kwak, Y. H., Ng, T., and Odabasi, A. M. (2003). “Project delivery systems and project change: Quantitative analysis.” Journal of Construction Engineering and Management, 10.1061/ (ASCE)0733-9364(2003)129:4(382), 382–387.
24. Idaho Transportation Department (ITD), Idaho, USA. (2014). “Project Delivery Methods Table.” @ https://itd.idaho.gov/wp-content/uploads/Project-Delivery-Methods.pdf.
25. Kao, C.-H. (2008). “Study of interface coordination and integration between civil and E&M works for metro projects-the case of KMRT project.” Master thesis, National Kaohsiung First University, Kaohsiung, Taiwan. (in Chinese).
26. Konchar, M., and Sanvido, V. (1998). “Comparison of U.S. project delivery systems.” Journal of Construction Engineering and Management, 10.1061/(ASCE)0733-9364(1998)124:6(435), 435–444.
27. Kung Sing Engineering Co. Ltd., Bombardier Inc. (2003). “Manufacture and Supply Agreement (MSA).” Taipei MRT Neihu Line Project, Taiwan.
28. Lee, T. C., Tseng, C. –W., Hung, J. -H. (2010). “Compensation of Project Overhead Damages for Owner Caused Delay in Public Construction,” Case Study Report of National Science Council of Taiwan.
29. Lin, C. Y. (2007). “Investigation of Interface Management System for Taiwan-High-Speed-Rail Bulk Supply Substation.” Master’s thesis, College of Engineering, National Chiao Tung University, Hsinchu, Taiwan. (in Chinese).
30. Lin, Y. C. (2013). “Construction network-based interface management system.” Automation in Construction, 30, 228-241.
31. Molenaar, K. R., and Gransberg, D. D. (2001). “Design-builder selection for small highway projects.” Journal of Management in Engineering, 10.1061/(ASCE)0742 -597X(2001)17:4(214), 214–223.
32. Molenaar, K.R., Songer, A.D., and Barash, M. (1999). “Public-sector design/build evolution and performance.” Journal of Management in Engineering, 15(2), 54–62. 10.1061/(ASCE) 0742-597X(1999)15:2(54).
33. Morris, P. W. G. (1997). “Managing project management - key points for project success.” in Project Management Handbook, 2nd Edition (eds. D. I. Cleland and W. R. King), John Wiley & Sons, Inc., Hoboken, NJ, USA. doi: 10.1002/9780470172353.ch2.
34. Nooteboom, U. (2004). “Interface management improves on-time, on budget delivery of megaproject.” Journal of Petroleum Technology, 56(8), 32-34.
35. O’Connor, J. T., and Miller, S. J. (1994). “Barriers to constructability implementation.” Journal of Performance of Constructed Facilities, 8(2), 110-129, ASCE.
36. Pavitt, T. C., and Gibb, A. G. F. (2003). “Interface management within construction: in particular, building façade.” Journal of Construction Engineering and Management, 129(1), 8-15.
37. Shen, W., Choi, B., Lee, S.-H., Tang, W., and Haas, Carl T., (2018). “How to Improve Interface Management Behaviors in EPC Projects: Roles of Formal Practices and Social Norms.” Journal of Management in Engineering, 34(6): 04018032, DOI: 10.1061/(ASCE)ME.1943- 5479.0000639.
38. Shen, W., W. Tang, S. Wang, C. F. Duffield, F. K. P. Hui, and R. You. (2017). “Enhancing trust-based interface management in international engineering-procurement-construction projects.” Journal of Construction Engineering and Management, 143 (9): 04017061.
39. Shokri, S. (2014). “Interface management for Complex Capital Projects,” PhD dissertation, the University of Waterloo, Canada.
40. Shokri, S., Haas, C. G., Haas, R., and Lee, S. (2015). “Interface-management process for managing risks in complex capital projects.” Journal of Construction Engineering and Management, 142, 04015069-1-12, ASCE.
41. Shokri, S., M. Safa, C. T. Haas, and R. C. G. Haas. (2011). “A conceptual framework to improve information and process management in the execution of capital projects.” 3rd International/9th Construction Specialty Conference.
42. Shokri, S., Safa, M., Haas, C. T., Haas, R. C. G., Maloney, K., and MacGillivray, S. (2012). “Interface management model for mega capital projects.” Construction Research Congress 2012, ASCE, Reston, VA, 447-456.
43. Song, L., Mohamed, Y., AbouRizk, S.M. (2009). “Early contractor involvement in design and its impact on construction schedule performance.” Journal of Management in Engineering, 25(1), pp. 12-20, ASCE.
44. Stuckenbruck, L. C. (1997). “Integration: The essential function of project management.” Project Management Handbook, 2nd Ed., John Wiley & Sons, Inc., Hoboken, NJ, USA.
45. Tsai, T.-H. (2005). “A Study on Construction Interface Disputes for Electrical and Mechanical Works of the Rapid Transit System.” Master thesis, Shih Hsin Univ., Taipei, Taiwan. (in Chinese).
46. Uhlik, F. T., and Lores, G. V. (1998). “Assessment of constructability practices among general contractors.” Journal of Architectural Engineering, 4(3), 113-123.
47. Vidal, L.-A., and Marle, F. (2008). “Understanding project complexity: Implications on project management.” Kybernetes, 37(8), 1094-1110.
48. Wei, Raymond L. C., Chua, Eric, and Chou, Michael. (2010). “In-house combined services drawing/ structural, electrical & mechanical (CSD/SEM) coordination and drawing production for downtown Line 1 (DTL1) promenade station and tunnels.” Proceedings of the World Urban Transit Conference, DOI:10.3850/978-981-08-6396-8_T2-02.
49. Wren, D. A. (1967). “Interface and interorganizational coordination.” Academic Management Journal, 10 (1): 69–81. https://doi.org/10.5465/255245.
50. Xia, B., and Chan, A. (2008). “Review of the design-build market in the People’s Republic of China.” Journal of Construction Procurement, 14(2), 108–117.
51. Yeh, H.-H., Hsieh, T.-Y., and Chen, J.-H, and Peng, H.-T. (2019). “Preventive interface management for design-build wireless train control mass rapid transit projects.” Journal of Performance of Constructed Facilities, ASCE Accepted on 21 March 2019.
52. Yeh, H.-H., Hsieh, T.-Y., and Chen, J.-H. (2017). “Managing complex engineering interfaces of urban mass rapid transit projects.” Journal of Construction Engineering and Management, Vol. 143, no. 6, article 05017001, ASCE.指導教授 謝定亞(Ting-Ya Hsieh) 審核日期 2019-6-27 推文 facebook plurk twitter funp google live udn HD myshare reddit netvibes friend youpush delicious baidu 網路書籤 Google bookmarks del.icio.us hemidemi myshare