博碩士論文 106356003 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:102 、訪客IP:13.59.148.240
姓名 邱筠捷(Yun-Chieh Chiu)  查詢紙本館藏   畢業系所 環境工程研究所在職專班
論文名稱 不同緩衝材料對核種之遷移及遲滯效能研究
(Function for Retard Nuclides Migration of different buffer materials)
相關論文
★ 工業廢水對灌溉水質影響之研究-以黃墘溪為例★ 廢冷陰極管汞回收處理效率之研究
★ 室內懸浮微粒與生物氣膠之相關性探討-以某醫學中心為例★ 化學機械研磨廢液對工業區污水處理效益與 操作成本之影響
★ 網路數位電力監測系統於大學用電行為分析之研究★ 光電業進行自願性碳標準(VCS)減量計畫可行性之研究
★ 污染農地整治後未能符合農用成因之探討★ 桃園縣居家入侵紅火蟻防治方法探討
★ 印刷電路板產業濕式製程廢液回收鈀金屬可行性之研究★ 不同表面特性黏土催化高分子凝聚劑與消毒劑(氯)反應之研究
★ 界面活性劑對土壤/水系統中有機污染物分佈行為之研究★ 淨水程序中添加高分子凝聚劑對混凝與加氯處理效應之研究
★ 土壤無機相對揮發性有機污染物吸∕脫附行為之影響★ 土壤對Triton 系列各EO鏈選擇性吸附之研究
★ 土壤有機質對土壤/水系統中低濃度非離子有機污染物吸附行為之研究★ 不同表面特性黏土催化水中有機物之氯化反應研究
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 於用過核子燃料最終處置設施中,緩衝材料應阻止地下水或腐蝕物質直接接觸廢棄物罐,並且延緩放射性核種向生物圈遷移之速度,達到滯遲(retardation)核種遷移之效果。緩衝材料之成分與規格將直接影響其滯遲能力,本研究以MX-80膨潤土、SWy-2 鈉型蒙脫石及蒙脫石含量20%至100%之調配材料為標的,考量緩衝材料成分、壓實乾密度及溫度條件之影響,量測不同規格緩衝材料之回脹壓力、水力傳導度及不同材料對Cs+與Sr2+核種吸附能力。
MX-80膨潤土於乾密度1,300 kg/m3至1,600 kg/m3條件之回脹壓力介於964 kPa至6,767 kPa之間,隨著乾密度增加而上升;水利傳導度則隨著試體乾密度提升而降低,約介於10-15 m/s至10-12 m/s之間;環境溫度從30°C升溫至60°C及 90°C時,緩衝材料試體之水力傳導度會隨著溫度上升而增加。此外,藉由不同SWy-2 鈉型蒙脫石配比土樣之回脹及水力傳試驗結果,單位緩衝材料中之蒙脫石含量與回脹壓力呈正比,且與水力傳導度呈反比。
吸附實驗結果顯示,MX-80膨潤土及不同SWy-2 鈉型蒙脫石配比土樣對Cs+及Sr2+之吸附行為皆符合Langmuir等溫吸附曲線,各土樣對Cs+之飽和吸附量皆大於Sr2+,而飽和吸附量則與土壤之蒙脫石含量呈正比。故高蒙脫石含量之材料選擇及高設計乾密度有利於滯遲核種向外遷移之效果。
摘要(英) In the final disposal facilities for spent nuclear fuel, buffer plays a role of barrier which not only prevents canister from directly exposing to groundwater and corrosive materials but also retards the migration of radial nuclides to biosphere. The “retardation” process is derived by the composition and specification of buffer. MX-80 bentonite, SWy-2 Na-montmorillonite and blended soil (20%~100% montmorillonite) were used in this research. The objective of this paper is to survey the swelling pressure, hydraulic conductivities, and nuclide (Cs+ and Sr2+) adsorption capacities of different buffer materials and specifications under different temperature conditions.
Swelling pressure and hydraulic conductivities of MX-80 bentonite with dry densities 1,300 kg/m3 ~1,500 kg/m3 were 964 kPa~6,67 kPa and 10-15 m/s ~10-12 m/s respectively; the swelling pressure increased as dry density increased while the hydraulic conductivity decreased as dry density increased. During the heating process, i.e. from 30°C to 60°C and 90°C, the hydraulic conductivity increased with increasing temperature. In addition, swelling pressure was proportional to, and hydraulic conductivity was inversely proportional to the montmorillonite content of soil.
The results of the adsorption experiment using the soil with different content of montmorillonite as sorbent indicated that both adsorption behaviors of Cs+ and Sr2+ are consistent with the Langmuir isotherm model. The adsorption capacity of Cs+ was larger than Sr2+, and the maximum adsorption capacities were proportional to the montmorillonite content in the soil. It was concluded that the selection of soil with high content of montmorillonite and high dry density as buffer materials could conduce to better retardation capability of nuclide migration.
關鍵字(中) ★ 緩衝材料
★ 回脹壓力
★ 水力傳導度
★ 銫
★ 鍶
★ 吸附
關鍵字(英) ★ buffer
★ swelling pressure
★ hydraulic conductivity
★ cesium
★ strontium
★ adsorption
論文目次 第 1 章 前言 1
1-1 研究緣起 1
1-2 研究目的 4
第 2 章 文獻回顧 6
2-1 用過核子燃料簡介 6
2-1-1 國內用過核子燃料概況 7
2-1-2 用過核子燃料特性 9
2-2 國內外相關管制法規 9
2-2-1 國際法規 10
2-2-2 國內管制法規 14
2-3 用過核子燃料最終處置技術 15
2-3-1 深層地質處置 17
2-3-2 深鑽孔處置 20
2-4 緩衝材料特性 24
2-4-1 膨潤土 25
2-4-2 高嶺土 26
2-4-3 雲母 27
2-4-4 蛭石 28
第 3 章 研究設備與方法 30
3-1 研究內容與流程 30
3-2 實驗材料 32
3-2-1 MX-80膨潤土 32
3-2-2 鈉型蒙脫石 32
3-2-3 渥太華標準砂 32
3-2-4 藥品 33
3-3 實驗設備與儀器 33
3-3-1 實驗設備 33
3-3-2 實驗儀器 34
3-4 試驗方法 41
3-4-1 元素分析(XRF) 41
3-4-2 礦物分析(XRD) 42
3-4-3 比表面積分析(BET) 42
3-4-4 試體製備 43
3-4-5 回脹試驗 46
3-4-6 水力傳導試驗 47
3-4-7 吸附試驗 48
第 4 章 結果與討論 49
4-1 緩衝材料基本理化特性分析 49
4-1-1 元素分析 49
4-1-2 礦物組成分析 50
4-1-3 比表面積、平均孔徑與孔徑分佈分析 52
4-1-4 有機碳含量 58
4-2 回脹壓力 59
4-2-1 試體密度對回脹壓力之影響 60
4-2-2 溫度對回脹壓力之影響 67
4-2-3 不同蒙脫石含量對回脹壓力之影響 70
4-3 水力傳導度 74
4-3-1 試體密度對水力傳導度之影響 74
4-3-2 溫度對水力傳導度之影響 77
4-3-3 不同蒙脫石含量對水力傳導度之影響 80
4-4 核種吸附特性 83
4-4-1 MX-80膨潤土 84
4-4-2 SWy-2 鈉型蒙脫石 88
4-4-3 不同蒙脫石比例對核種吸附之影響 91
第 5 章 結論與建議 97
5-1 結論 97
5-2 建議 98
參考文獻 100
參考文獻 1.IAEA, Power Reactor Information System, PRIS, Retrieved from https://www.iaea.org/pris/, (2018).
2.台灣電力公司,用過核子燃料最終處置計畫書2010年修訂版,(2010)。
3.Nuclear Power, Nuclear Power Plant, Retrieved from https://www.nuclear-power.net/nuclear-power-plant/,(2018).
4.ENUSA, Nuclear Business- Manufacturing, Retrieved from http://www.enusa.es/en/areas-de-negocio/nuclear/fabricacion/, (2018).
5.台灣電力公司,我國用過核子燃料最終處置技術可行性評估報告,(2017)。
6.IAEA , Joint Convention on the Safety of Spent Fuel Management and on the Safety of Radioactive Waste Management, INFCIRC/546, (1997).
7.Council Directive of Euratom, Community framework for the responsible and safe management of spent fuel and radioactive waste, Official Journal of the European Union, Publications Office of the European Union, Luxembourg, No. L199, (2011).
8.行政院原子能委員會,高放射性廢棄物最終處置及其設施安全管理規則,(2013)。
9.行政院原子能委員會,高放射性廢棄物最終處置設施場址規範,(2017)。
10.IAEA, Classification of Radioactive Waste, IAEA Safety Standards Series No. GSG-1, IAEA, Vienna (2009).
11.IAEA, Stockholm Int′l Conf on Geological Repositories: Political & Technical Progress (Sweden), Dec. 8-10, 2003, Stockholm, (2003).
12.Chapman, N., Mccombie, C., Principles and Standards for the Disposal of Long-lived Radioactive Wastes, Vol. 3, (2003).
13.SKB, KBS-3H Complementary studies, 2008-2010, SKB, TR-12-01, (2012).
14.POSIVA, Retrieved from http://www.posiva.fi/en/final_disposal/basics_of_the_final_disposal#.W1bsF9UzbX42017, (2018).
15.IAEA, Borehole Disposal of Sealed Radioactive Sources or BOSS (Borehole disposal of Sealed radioactive Sources), Retrieved from https://www.iaea.org/OurWork/ST/NE/NEFW/Technical-Areas/WTS/BOSS-main.html, (2018).
16.Beswick, J., Status of Technology for Deep Borehole, NDA deep disposal report Rev7, Contract No NP 01185, (2008).
17.徐國慶,高放廢物深鑽孔處置的可行性研究現狀,第5屆廢物地下處置學術研討會論文集,(2014)。
18.孫龍德,中國深層油氣資源潛力分析,中國石油大學,(2014)。
19.Posiva and SKB, Safety functions, performance targets and technical design requirements for a KBS-3V repository, Conclusions and recommendations from a joint SKB and Posiva working group, POSIVA SKB Report 01, (2017).
20.SKB, Buffer, backfill and closure process report for the safety assessment SR-Site, SKB, TR-10-47, (2010).
21.王明光,土壤環境礦物學,三明書店發行,(2000)。
22.吳柏林,放射性廢料處置場中砂-皂土混合緩衝材料之壓實性質,國立中央大學土木工程研究所博士論文,共297頁,第84-89頁,(2005)。
23.Brunauer, S., L. S. Deming, W. S. Deming, and E. Teller, J. "Am.Chem.Soc." 62, p. 1723. (1940).
24.IUPAC Manual of Symbols and Terminology, Appendix 2, Pt. 1,Colloid and Surface Chemistry, Pure Appl. Chem. 31, 578, (1972).
25.Lee, J. O., Cho, W. J., Kang, C. H., and Chun, K. S., Swelling and hydraulic properties of Ca-bentonite for the buffer of a waste repository, IAEA, SM-357/68, (2001).
26.Lee, J. H., Lee, M. S., Choi, H. J., and Choi, J. W., Temperature Effect on the Swelling Pressure of a Domestic Compacted Bentonite Buffer, J. of the Korean Radioactive Waste Society, Vol.8(3), P. 207-213, (2010).
27.Ye , W. M., Wan, M., Chen, B., Chen, Y. G., Cui, Y. J., and Wang, J., Temperature effects on the swelling pressure and saturated hydraulic conductivity of the compacted GMZ01 bentonite, Environmental Earth Sciences, Volume 68, Issue 1, pp 281–288, (2013).
28.Villar, M. V., and Lloret, A., Influence of temperature on the hydro-mechanical behaviour of a compacted bentonite. Appl Clay Sci 26:337–350, (2004).
29.JNC, H12: Project to Establish the Scientific and Technical Basics for HLW Disposal in Japan, Project Overview report, JNC, TN1410-2000-001, (2000).
30.Lide, R. D., Handbook of Chemistry and Physics, 75th edn. CRC Press, New York, (1995).
31.王哲、李海峰,內蒙高廟子膨潤土對放射性核素鍶和銫的吸附性能研究,山東化工,2015年16期,(2015)。
32.陳皓馨,天然膨潤土改質與膠囊化處理及其對Sr2+及Cs+離子之吸附特性研究,國立成功大學資源工程研究所碩士論文,共107頁,(2017)。
33.Baborova, L., Vopálka, D., and Červinka, R., Sorption of Sr and Cs onto Czech natural bentonite: experiments and modelling, Journal of Radioanalytical and Nuclear Chemistry , 318(1–4), (2018).
34.Erten, H. N., Aksoyoglu , S., Hatipoglu, S., Göktürk, H., Sorption of Cesium and Strontium on Montmorillonite and Kaolinite, Radiochimica Acta 44/45, 147-151 (1988).
35.張配聰、倪師軍、張成江、張東、康厚軍,土壤電化學性能對鈾、鍶、銫分配係數的影響與機理探討,化學研究與應用,Vol. 120,No. 10,1004-1656,(2008)。
36.Liu, D. C., Hsu, C. N., and Chuang, C. L., Ion-exchange and sorption kinetics of cesium and strontium in soils, Applied Radiation and Isotopes, Volume 46, Issue 9 , Pages 839-846, (1995).
37.Conway, B. E., Hydration in Chemistry and Biophysics, (1981).
指導教授 李俊福(Jiunn-Fwu Lee) 審核日期 2019-7-26
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明