以作者查詢圖書館館藏 、以作者查詢臺灣博碩士 、以作者查詢全國書目 、勘誤回報 、線上人數:52 、訪客IP:3.141.25.133
姓名 李采縈(Tsai-Ying Lee) 查詢紙本館藏 畢業系所 遙測科技碩士學位學程 論文名稱 應用氣膠種類與垂直分布建立衛星氣膠光學厚度和PM濃度之關係
(The relationship between AOD and PM concentration based on aerosol type and vertical distribution)相關論文 檔案 [Endnote RIS 格式] [Bibtex 格式] [相關文章] [文章引用] [完整記錄] [館藏目錄] [檢視] [下載]
- 本電子論文使用權限為同意立即開放。
- 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
- 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。
摘要(中) 大氣氣膠的輻射效應是決定地球系統輻射能量收支的一個關鍵因素,與全球溫室效應及氣候變遷問題有關。大氣中的細懸浮微粒(Particulate Matter;PM2.5),是嚴重影響公眾健康的空氣污染物,特別是在近地表層的範圍。目前主要監測PM2.5濃度的方式是利用地面監測站,但地面測站的位置分佈不均且數量不足,無法提供完整空間分佈的資訊。而透過衛星遙測技術提供大範圍的氣膠分布是可行的,但衛星所提供之訊息為整層大氣之總和,須配合氣膠垂直分布,決定近地表的PM2.5濃度訊息。此外,不同氣膠種類之輻射特性具有明顯差異,為PM2.5濃度計算之重要因子,因此本文將應用前人在氣膠垂直分布之擬合結果,萃取近地表氣膠之消光係數,配合氣膠種類之辨識,藉由氣膠光學厚度(Aerosol Optical Depth ; AOD)和細懸浮微粒(PM2.5)間關係的建立,來改進衛星反演近地表PM2.5的準確性,以提供PM2.5在時間和空間變化的詳細信息。
本研究目的在於建立內蒙古、台北和清邁地區地面站的AOD和PM2.5濃度之間的關係,分別對沙塵(DS),人為污染物(AP)和生質燃燒(BB)氣膠進行分析。從結果可以看出,對於沙塵粒子、人為污染物和生質燃燒氣膠,在地面測量的AOD和PM2.5之間的相關係數分別為0.625、0.754和0.884。將關係結果進一步應用於台灣地區MODIS AOD產品上進行驗證。與地面測站結果相互比較,其方均根誤差(RMSE)為9.685μ?/m3,說明本研究所提出的衛星遙測PM2.5濃度監測方法具有很高的可行性。
摘要(英) The radiometric effect of atmospheric aerosols is an important factor on earth radiation budget which related to the issues of global warming and climate change. Heavy loading of particulate matter (PM2.5) also has significant impact on human health, especially in the layer near surface. Currently, the ground-based measurement is primarily employed for the PM2.5 monitor, but the stationed location cannot meet the request in spatial distribution. Thus the satellite provides the total column aerosol information over wide region is usually applied, and consider the aerosol vertical distribution, to obtain near surface of PM2.5 concentration. In addition, the radiation characteristics of different aerosol types are significantly different, which is an important factor for the calculation of PM2.5 concentration. Therefore, this paper will apply the fitting result of the previous vertical distribution of aerosol, extract near-surface aerosol extinction coefficient, combined with the identification of aerosol type, based on establishment of the relationship between aerosol optical depth (AOD) and particulate matter (PM2.5), to improve accuracy of satellite retrieved near surface PM2.5. To provide detailed information in temporal and spatial of quality.
This study intends to establish the relationship between AOD and PM concentration based on grounds station in the region of Inner Mongolia, Taipei and Chiang Mai for sampling dust (DS), anthropogenic pollutants (AP) and biomass burning (BB) aerosols respectively. It can be seen from the results that the correlation coefficients between AOD and PM based on the ground-based measurements are 0.625, 0.754 and 0.884 for DS, AP and BB respectively. The results of relationship are further applied to MODIS AOD products in Taiwan. The root mean square error (RMSE) is 9.685??/?3 after compared with ground measurements, indicating highly feasibility of proposed approach for PM concentration monitor from satellite remote sensing.關鍵字(中) ★ 細懸浮微粒
★ 氣膠光學厚度
★ 氣膠垂直分布
★ 氣膠種類辨識關鍵字(英) 論文目次 摘要 I
Abstract II
致謝 IV
目錄 V
圖目錄 VII
表目錄 XII
第1章 緒論 1
1.1 背景說明 1
1.2 文獻回顧 4
1.2.1 氣膠之輻射效應 4
1.2.2 氣膠光學垂直特性 6
1.2.3 衛星遙測反演懸浮微粒之濃度 8
1.3 研究目的 12
第2章 研究資料 13
2.1 分析資料 13
2.1.1 AERONET 13
2.1.2 空氣品質監測站 16
2.2 應用資料 17
2.2.1 MODIS感測器 17
2.2.2 GMAO 20
2.2.3 環保署空氣品質監測網 21
第3章 研究方法 23
3.1 研究概念 23
3.1.1 氣膠光學厚度(Aerosol Optical Depth, AOD) 23
3.1.2 懸浮微粒 (Particulate Matter, PM) 23
3.1.3 氣膠光學厚度與懸浮微粒濃度之關係 25
3.1.4 氣膠種類辨識 27
3.2 研究架構 29
第4章 結果與討論 31
4.1 氣膠光學厚度與懸浮微粒濃度關係之分析及結果 31
4.1.1 氣膠分類結果 31
4.1.2 氣膠光學厚度與懸浮微粒濃度之關係 35
4.2 氣膠光學厚度與懸浮微粒濃度關係之應用 44
4.2.1 MODIS衛星資料之應用 44
第5章 結論與展望 64
5.1 結論 64
5.2 未來展望 65
參考文獻 66參考文獻 郭俊江,2006,光達及太陽光度計之應用:2005年中壢氣膠光學垂直特性及邊界層高度之變化。國立中央大學大氣物理研究碩士論文,中壢。
王聖翔,2007,亞洲生質燃燒氣膠對區域環境與大氣輻射之衝擊及對氣象場的反饋作用。國立中央大學大氣物理研究所博士論文,中壢。
賈浩平,2008,微脈衝光達及太陽光度計之應用:2005-2007 年中壢地區氣膠光學垂直特性分析。國立中央大學大氣物理研究所碩士論文,中壢。
徐開炫,2010,2009 年春季鹿林山背景站氣膠垂直分佈與光學特性分析。國立中央大學大氣物理研究所碩士論文,中壢。
蔡顓宜,2010,結合衛星與地面觀測氣膠輻射參數在東南亞地區氣膠種類辨識之應用。國立中央大學太空科學研究所碩士論文,中壢。
蔡宗廷,2011,MODIS 衛星資料在亞洲地區氣膠種類辨識之應用。國立中央大學太空科學研究所碩士論文,中壢。
林韋彤,2013,AERONET 觀測資料在氣膠種類輻射參數之探討。國立中央大學太空科學研究所碩士論文,中壢。
李宗庭,2016,對數常態分布在氣膠消光係數廓線擬合之應用。國立中央大學遙測科技碩士學程碩士論文,中壢。
鍾嘉豪,2017,氣膠光學厚度與懸浮微粒濃度關係之探討及其在衛星觀測之應用。國立中央大學遙測科技碩士學程碩士論文,中壢。
蔡昱德,2019,對數常態分布應用於台灣地區氣膠單峰消光廓線擬合之分析與改進。國立中央大學遙測科技碩士學程碩士論文,中壢。
Brooks, N., & Legrand, M. (2000). Dust variability over northern Africa and rainfall in the Sahel. In Linking climate change to land surface change (pp. 1-25). Springer Netherlands.
Chu, D.A., Tsai, T.C., Chen, J.P., Chang, S.C., Jeng, Y.J., Chiang, W.L. and Lin, N.H., 2013, Interpreting aerosol lidar profiles to better estimate surface PM2.5 for columnar AOD measurements. Atmospheric Environment 79, 172-187.
Eck, T. F., B. N. Holben, O. Dubovik, A. Smirnov, P. Goloub, H. B.Chen B. Chatenet, L. Gomes, X.-Y.Zhang, S. –C. Tsay, Q. Ji, D. Giles,and I. Slutsker, 2005, Columnar aerosol optical properties at AERONET sites in central eastern Asia and aerosol transport to the tropical mid-Pacific, J. Gerphys. Res., 110, D06202, doi:10.1029/2004JD005274.
Kaufman, Y. J., Tanré, D., & Boucher, O. (2002). A satellite view of aerosols in the climate system. Nature, 419(6903), 215.
Kishcha, P., S.-H. Wang, N.-H. Lin, A. d. Silva, T.-H. Lin, P.-H. Lin, G.-R. Liu, B. Starobinets, P. Alpert (2018). Differentiating between Local and Remote Pollution over Taiwan. Aerosol and Air Quality Research, 18, 1788–1798, doi: 10.4209/aaqr.2017.10.0378 (SCI)
Perez, C., S. Nickovic, J. M. Baldasano, M. Sicard, F. Rocadenbish, and V. E. Cachorro, 2006, A long Saharan dust event over the western Mediterranean : Lidar, Sun Photometer observation, and regional Dust modeling, J. Geophys. Res., 111, D15214 doi:10.1029/2005JD 006579.
Sano, I., M. Makiko, I. Nobukazu and S. Mukaia, 2010, Suspended particulate matter sampling at an urban AERONET site in Japan, part2: relationship between column aerosol optical thickness and PM2.5 concentration, Journal of Applied Remote Sensing, Vol. 4, 043504.
Lelieveld, J., Berresheim, H., Borrmann, S., Crutzen, P. J., Dentener, F. J. Fischer, H., ... & Korrmann, R. (2002). Global air pollution crossroads over the Mediterranean. Science, 298(5594), 794-799.
Lin, C., Li, Y., Yuan, Z., Lau, A.K., Li, C. and Fung, J.C., 2015, Using satellite remote sensing data to estimate the high-resolution distribution of ground-level PM2.5. Remote Sensing of Environment 156, 117-128.
Lin, T.-H., Liu, G.-R., & Liu, C.-Y. (2016). A novel index for atmospheric aerosol type categorization with spectral optical depths from satellite retrieval. Int. Arch. Photogramm. Remote Sens. Spat. Inf. Sci, 277-279.
Wang, S.H., Lin, N. H., Chou, M. D., Woo, J. H., 2007. Estimate of radiative forcing of Asian biomass-burning aerosols during the period of TRACE-P. J.Geophys.Res., 112, No. D10, D1022210 .1029/2006JD007564.
Tsai, T.C., Jeng, Y.J., Chu, D.A., Chen, J.P. and Chang. S.C., 2011, Analysis of the relationship between MODIS aerosol optical depth and particulate matter from 2006 to 2008. Atmospheric Environment 45, 4777-4788.
Xin, J., Zhang, Q., Wang, L., Gong, C., Wang, Y., Liu, Z., & Gao, W. (2014). The empirical relationship between the PM 2.5 concentration and aerosol optical depth over the background of North China from 2009 to 2011. Atmospheric Research, 138, 179-188.
指導教授 林唐煌(Tang-Huang Lin) 審核日期 2019-7-26 推文 facebook plurk twitter funp google live udn HD myshare reddit netvibes friend youpush delicious baidu 網路書籤 Google bookmarks del.icio.us hemidemi myshare