博碩士論文 106327006 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:9 、訪客IP:18.226.248.77
姓名 陳品硯(Chen Ping-Yen)  查詢紙本館藏   畢業系所 光機電工程研究所
論文名稱 一種仿真LED平行曝光的調控演算法之研究
相關論文
★ 直下式背光模組最佳化之設計★ 反射式發光二極體光源之近燈頭燈設計
★ 指紋辨識之光學成像系統設計★ 微型投影機之LED光源設計
★ 具積體型稜鏡體之指紋辨識光學模組的光學特性分析研究★ 應用田口穩健設計法於特殊函數調變變化規範下的絕熱式光方向完全耦合器波導結構設計優化
★ 雙反射面鏡型太陽能集光模組設計★ 使用光線追跡法設計軸對稱太陽能集光器
★ 應用於直下式背光模組之邊射型發光二極體設計與其模組研究★ 高功率LED二次光學透鏡模組設計
★ 微型雷射投影機光學設計★ LED陣列用於室內照明之設計與驗證
★ 應用於聚光型太陽光電系統之二次光學元件設計與分析★ 一種色溫及色彩可控制的多光源燈具設計
★ 運用光場程式化技巧快速設計LED直下式背光模組之研究★ 應用於彩色共焦顯微術之繞射元件設計
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   至系統瀏覽論文 ( 永不開放)
摘要(中) 本論文主要在研究一種仿真LED平行曝光的調控演算技術,可用來模擬LED在平行曝光機中,因UV-LED的光衰變或搭配的準直二次光學元件偏移造成曝光成效不佳的結果。將單一LED與其相配合之二次光學元件組成光源組的照度分佈模型化,藉由建立各個距離目標平面D和光源直徑S的比率(距離直徑比,DSR)的光照度分佈函數,接著依據光照度疊加理論、二次微分法對多光源間距進行最佳化的演算,再將實際掃描式平行曝光機可能的光源組偏移誤差帶入演算法中計算最佳間距,建立配合反射元件的虛擬光源,增加可用的工作面積,最終完成仿真LED平行曝光的調控演算法的撰寫。
由於以UV-LED為光源所配合的準直二次光學元件製造不易,些微誤差即可造成光分佈不均的情況,因此考量未來模擬與實作驗證的可能性,本研究以白光LED仿真實際UV-LED作為模擬光源來代替。將照度模擬結果以最小平方法模型化,考慮實際的光源偏差,建立包含直線偏移和角度偏移的光分佈函數,再藉由數學函數的疊加原理建立陣列光分佈函數,光源偏移的參數參考履帶帶動光源進行週期性掃描曝光的方式,以常態分佈的概念在± 0.005mm作直線偏移、±0.5度作角度偏移。
最終本研究在理想不偏移的情況下演算所得的最佳間距,DSR=8、10、12、14、16、20之照度均勻度皆大於94%,在偏移極值的情況下,每個DSR的照度均勻度皆大於93%,而在亂數偏移的情況下,DSR越大,角度偏移對光源偏移的特徵越明顯,照度均勻度降低,因此DSR為8、10、12會有較好的照度均勻度結果,最後建立反射元件的演算法,藉由增加虛擬光源的方式,使的各DSR的可用工作面積增加,而其中DSR為12時從140×140〖mm〗^2增加為150×150〖mm〗^2,可用工作面積增加約14.7%。
摘要(英) In this thesis, we provide an regulation and calculation technique for simulating LED parallel exposure. It can be used to simulate the result of poor exposure which comes from the light decay of the UV-LED or the deviation of secondary optics in parallel exposure machine. The illuminance distribution of the light source group including a single LED and secondary optics is modeled by establishing an illuminance distribution function of a ratio of each distance from the target plane D to the source diameter S (D/S Ratio, DSR). Then optimize the source-to-source spacing by illumination superposition theory and secondary derivative method. After that, add the source group deviation parameters of the scanning parallel exposure machine to calculate the optimal spacing. Next, establish a virtual light source for the reflective element to increase the available working area. Finally, the regulation algorithm for simulating LED parallel exposure is completed.
Since the fabrication of secondary optics components with UV-LED is not easy, some slight errors can cause uneven light distribution. Due to the possibility of simulation and implementation verification in future, this study replaced the actual UV-LED with white light LED as an analog light source. We model the illuminance simulation by using the nonlinear least squares method. Then, we consider the actual source deviation and establish a light distribution function that includes linear and angular offsets. The light distribution function of the light source array is established by the superposition principle of the mathematical function. The parameter of the light source offset refers to the way continuous tracks drive the light source to perform periodic scanning exposure. Straight offset at ± 0.005mm as normal distribution, and angle offset at ±0.5 degrees for normal distribution. In the case of no deviation,
According to the design results, in the case of no offset, the illuminance uniformity of DSR=8, 10, 12, 14, 16, 20 is greater than 94%. In the case of offset extremes, the illumination uniformity of each DSR is greater than 93%. In the case of random number offset, the larger the DSR, the more obvious feature of the angular offset to the light source offset. Illumination uniformity is reduced. Therefore, the DSR of 8, 10, 12 will have better illuminance uniformity results. The last, establish the algorithm of the reflective element by creating a virtual light source. The available working area of each DSR is increased. When DSR is 12, the available working area is increased from 140×140〖mm〗^2 to 150×150〖mm〗^2. The available working area is increased by about 14.7%.
關鍵字(中) ★ 光分佈函數
★ 平行曝光技術
★ 多光源照度分佈演算法
關鍵字(英) ★ light spread function
★ parallel exposure technique
★ multiple irradiance distribution algorithm
論文目次 摘要 I
ABSTRACT II
致謝 III
目錄 IV
表目錄 VII
圖目錄 VIII
第一章、緒論 1
1-1研究背景 1
1-2研究動機與目的 5
1-3文獻回顧 6
1-3-1 UV-LED曝光機 6
1-3-2模型化方式回顧 9
1-4論文架構 12
第二章、基礎理論 13
2-1光度學 13
2-1-1立體角 13
2-1-2光通量 14
2-1-3光強度 14
2-1-4光照度 14
2-1-5輝度 14
2-2餘弦四次方定理 15
2-3光的餘弦定理 16
2-4照度均勻度 16
第三章、光分佈函數理論與分析 17
3-1照度分佈函數化 17
3-1-1非線性最小平方迴歸法 17
3-1-2照度分佈演算法 20
3-2平均絕對誤差理論 23
3-3光照度疊加理論 23
3-4多光源光分佈函數的平坦分佈計算 24
第四章、照度分佈調控演算法與掃描式平行曝光機之應用 27
4-1研究架構 27
4-2單光源偏移光分佈函數 28
4-2-1直線偏移模擬驗證 28
4-2-2角度偏移模擬驗證 29
4-3平行曝光機光源偏移公差 32
4-3-1直線偏移公差設定 32
4-3-2角度偏移公差設定 34
4-4理想多光源排列 35
4-4-1多光源光分佈函數演算法 35
4-4-2多光源光分佈函數照度均勻度與工作範圍 37
4-4-3理想多光源光分佈函數的模擬驗證 45
4-5非理想多光源排列 50
4-5-1光源偏差極值的函數驗證 50
4-5-2光源亂數偏差最佳間距調控 53
4-6曝光機反射元件設計 56
4-6-1鏡像光源虛擬法 56
4-6-2反射元件設計結果 58
第五章、結論與未來展望 60
5-1結論 60
5-2未來展望 61
第六章、參考文獻 62
參考文獻 [1] 「當前經濟情勢(專題:製造業附加價值率)」,經濟部統計處,2018,檢自https://bit.ly/2NJ1LlV
[2] 「微影技術持續精進 半導體工業延續飛躍性成長」,DIGITIMES企劃,2014,檢自https://bit.ly/2lIeKs4
[3] Mikael Östling. 2013. Lecture 9 Microlithography. Retrieved from https://www.kth.se/social/upload/5118b796f276547ffd5f8869/Lecture
[4] C. P. Lin, H. H. Yang and C. K. Chao. 2003. “A new microlens array fabrication method using UV proximity printing”. Journal of Micromechanics nad Microengineering, Vol. 13, pp. 748-757.
[5] Michael Quirk and Julian Serda. 2001. Semiconductor Manufacturing Technology. Prentice Hall. United States.
[6] 「超高壓UV短弧氙氣燈」,USHIO產品資訊,檢自http://www.ushio.com.tw/tw/products/list/lamp/lamp_01.html
[7] 「USHIO DISCHARGE LAMPS」,USHIO產品資訊,檢自http://www.ushio.com.tw/documents/products/lamp/ushio_discharge_lamps.pdf
[8] Wolfgang Sievers. 2013. Exposing printing plates using light emitting diodes. U.S. Patent No. 8389203 B2
[9] Chi-Feng Chen. 2013. Scanned UV-LED exposure device. U.S. Patent No.8809813 B1
[10] 郭信宏,2016,「一種應用於類面光源陣列的光場演算技術之研究」,國立中央大學,博士論文。
[11] 徐安永,2017,「一種應用於準直系統光源的光照度分佈演算之研究」,國立中央大學,碩士論文。
[12] 鍾奕晨,2019,「一種應用於UV-LED系統光源設計的光分佈演算法之研究」,國立中央大學,碩士論文。
[13] Franklin A. Graybill and Hariharan K. Iyer. 1994. Regression Analysis: Concepts and Applications, Duxbury Pr. United States.
[14] Douglas C. Montgomery, Cheryl L. Jennings and Murat Kulahci. 2011. Introduction to time series analysis and forecasting. John Wiley & Sons. United States.
[15] C. M. Sparrow. 1916. “On spectroscopic resolving power”. The Astrophysical Journal, Vol. 44, pp. 76.
[16] 「CREE MCPCB」,佳皇科技公司產品資訊,檢自https://www.led-shop.com.tw/hsx1208.htm
[17] T. M. Koh et al. 2013. “Formamidinium-containing metal-halide: an alternative material for near-IR absorption perovskite solar cells”. The Journal of Physical Chemistry C. Vol. 118(30), pp. 16458-16462.
[18] I. Moreno, M. Avendaño-Alejo, & R. I. Tzonchev. 2006. “Designing light-emitting diode arrays for uniform near-field irradiance”. Applied optics, Vol. 45(10), pp. 2265-2272.
[19] I. Moreno, C. C. Sun, & R. Ivanov. 2009. “Far-field condition for light-emitting diode arrays”. Applied optics, Vol. 48(6), pp. 1190-1197.
[20] C. C. Sun, W. T. Chien, I. Moreno, C. C. Hsieh and Y. C. Lo. 2009. “Analysis of the far-field region of LEDs”. Optics express, Vol. 17(16), pp. 13918-13927.
[21] E. Hecht. 2002. Optics. 4th. International edition, Addison-Wesley, San Francisco, 3.
[22] C. C. Sun, T. X. Lee, S. H. Ma, Y. L. Lee and S. M. Huang. 2006. “Precise optical modeling for LED lighting verified by cross correlation in the midfield region”. Optics letters, Vol. 31(14), pp. 2193-2195.
[23] R. Wu, Z. Zheng, H. Li and X. Liu. 2012. “Optimization design of irradiance array for LED uniform rectangular illumination”. Applied optics, Vol. 51(13), pp. 2257-2263.
指導教授 陳奇夆 審核日期 2019-11-27
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明