參考文獻 |
[1] H. Jalili and O. Momeni, “A 318-to-370GHz standing-wave 2D phased array in 0.13μm
BiCMOS,” IEEE Int. Solid-State Circuits Conf. Tech. Dig., pp. 310-311, 2017.
[2] S. H. Baek, H. B. Lim, and H. S. Chun, “Detection of Melamine in foods using terahertz
time-domain spectroscopy,” J. Agricultural Food Chemistry, vol. 62, no. 24, pp. 5403
5407, 2014.
[3] K. B. Cooper et al., “THz imaging radar for standoff personal screening,” IEEE Trans.
Terahertz Science Technol., vol. 1, no. 1, pp. 169-182, Sep. 2011.
[4] S. H. Baek, H. B. Lim, and H. S. Chun, “Detection of Melamine in foods using terahertz
time-domain spectroscopy,” J. Agricultural Food Chemistry, vol. 62, no. 24, pp. 5403
5407, 2014.
[5] M. B. Dayanik and M. P. Flynn, "Digital Fractional-N PLLs Based on a Continuous-Time
Third-Order Noise-Shaping Time-to-Digital Converter for a 240-GHz FMCW Radar
System," in IEEE Journal of Solid-State Circuits, vol. 53, no. 6, pp. 1719-1730, June 2018.
[6] L. Wang, Y. Xiong, B. Zhang, S. Hu, and T. Lim, "Millimeter-Wave Frequency Doubler
With Transistor Grounded-Shielding Structure in 0.13-μm SiGe BiCMOS Technology,"
in IEEE Transactions on Microwave Theory and Techniques, vol. 59, no. 5, pp. 1304-1310,
May 2011.
[7] B. Cetinoneri, Y. A. Atesal, A. Fung, and G. M. Rebeiz, "W-Band Amplifiers With 6-dB
Noise Figure and Milliwatt-Level 170–200-GHz Doublers in 45-nm CMOS," in IEEE
Transactions on Microwave Theory and Techniques, vol. 60, no. 3, pp. 692-701, March
2012.
[8] J. Oh, J. Jang, C. Kim, and S. Hong, "A W-Band High-Efficiency CMOS Differential
Current-Reused Frequency Doubler," in IEEE Microwave and Wireless Components Letters, vol. 25, no. 5, pp. 307-309, May 2015.
[9] J. Chen and H. Wang, "A High Gain, High Power K-Band Frequency Doubler in 0.18
μmCMOS Process," in IEEE Microwave and Wireless Components Letters, vol. 20, no. 9,
pp. 522-524, Sept. 2010.
[10] Steve C. Cripps, "RF Power Amplifiers for Wireless Communications,"2nd Edition 2006.
[11] 王淳,"以 40-nm CMOS 製程實現操作於 100-GHz 之功率放大器設計," 碩士論文 國立中央大學,July. 2017.
[12] C. Li, C. Kuo and M. Kuo, "A 1.2-V 5.2-mW 20–30-GHz Wideband Receiver Front-End
in 0.18-μmCMOS," in IEEE Transactions on Microwave Theory and Techniques, vol. 60,
no. 11, pp. 3502-3512, Nov. 2012.
[13] W. L. Chan and J. R. Long, “A 58–65 GHz neutralized CMOS power amplifier with PAE
above 10% at 1-V supply,” IEEE J. Solid-State Circuits, vol. 45, no. 3, pp. 554–564, Mar.
2010.
[14] Stephen A. Maas,“Nonlinear Microwave and RF Circuits,”2nd Edition. Artech House, pp.
477-496, 2003.
[15] Sarkas et al., “Silicon-Based radar and imaging sensors operating above 120 GHz,” 19th
International Conference on Microwaves, Radar & Wireless Communications, Warsaw,
2012, pp. 91-96.
[16] P. Tsai, Y. Lin, J. Kuo, Z. Tsai, and H. Wang, "Broadband Balanced Frequency Doublers
With Fundamental Rejection Enhancement Using a Novel Compensated Marchand
Balun," in IEEE Transactions on Microwave Theory and Techniques, vol. 61, no. 5, pp.
1913-1923, May 2013.
[17] M. Uzunkol and G. Rebeiz, "A Low-Loss 50–70 GHz SPDT Switch in 90 nm CMOS,"
in IEEE Journal of Solid-State Circuits, vol. 45, no. 10, pp. 2003-2007, Oct. 2010.
[18] 林憲佳,"應用於感測器與太赫茲通訊之互補式金氧 半高頻電路設計," 碩士論文國立中央大學,Oct. 2017.
[19] B.Razavi, “RF microelectronics”,2nd edition, Prentice - Hall, 2011
[20] D. M. Pozar, “Microwave Engineering”, 4th edition, John Wiley and Sons Inc, 2012.
[21] Stephen Brown, Zvonko Vranesic, Fundamentals of digital logic with verilog design, 2nd
ed. New Delhi: India, 2012.
[22] Y. Ye, B. Yu, and Q. J. Gu, “A 165-GHz transmitter with 10.6% peak DC-toRF efficiency
and 0.68-pj/b energy efficiency in 65-nm bulk cmos,” IEEE Trans. Microw. Theory Techn.,
vol. 64, no. 12, pp. 4573–4584, Dec. 2016.
[23] J. Kim, S. Kim, K. Song, and J. Rieh, "A 300-GHz SPST Switch With a New Coupled
Line Topology in 65-nm CMOS Technology," in IEEE Transactions on Terahertz Science
and Technology, vol. 9, no. 2, pp. 215-218, March 2019.
[24] M. Uzunkol and G. M. Rebeiz, “140–220 GHz SPST and SPDT switches in 45 nm CMOS
SOI,” IEEE Microw. Wireless Compon. Lett., vol. 22, no. 8, pp. 412–414, Aug. 2012.
[25] J. Park et al., “A 260 GHz fully integrated CMOS transceiver for wireless chip-to-chip
communication,” in Proc. IEEE Symp. VLSI Circuits, June 2012, pp. 48–49.
[26] Z. Wang, P. Chiang, P. Nazari, C. Wang, Z. Chen, and P. Heydari, "A CMOS 210-GHz
Fundamental Transceiver With OOK Modulation," in IEEE Journal of Solid-State Circuits,
vol. 49, no. 3, pp. 564-580, March 2014.
[27] S. Moghadami, F. Hajilou, P. Agrawal, and S. Ardalan, "A 210 GHz Fully-Integrated OOK
Transceiver for Short-Range Wireless Chip-to-Chip Communication in 40 nm CMOS
Technology," in IEEE Transactions on Terahertz Science and Technology, vol. 5, no. 5, pp.
737-741, Sept. 2015.
[28] S. Kang, S. V. Thyagarajan and A. M. Niknejad, "A 240 GHz Fully Integrated Wideband
QPSK Transmitter in 65 nm CMOS," in IEEE Journal of Solid-State Circuits, vol. 50, no.
10, pp. 2256-2267, Oct. 2015.
[29] N. Sarmah et al., “A fully integrated 240-GHz direct-conversion quadrature transmitter
and receiver chipset in SiGe technology,” IEEE Trans. Microw. Theory Tech., vol. 64, no.
2, pp. 562-574, Feb. 2016 . |