參考文獻 |
[1] Alexander, L., Jiang, S., Murga, M., & González, M. C., 2015. Origin–destination trips by purpose and time of day inferred from mobile phone data. Transportation Research Part C: Emerging Technologies, 58, 240-250.
[2] Alsger, A., Assemi, B., Mesbah, M., & Ferreira, L., 2016. Validating and improving public transport origin–destination estimation algorithm using smart card fare data. Transportation Research Part C: Emerging Technologies, 68, 490-506.
[3] Bolbol, A., Cheng, T., Tsapakis, I., & Haworth, J., 2012. Inferring hybrid transportation modes from sparse GPS data using a moving window SVM classification. Computers, Environment and Urban Systems, 36(6), 526-537.
[4] Bayir, M. A., Demirbas, M., & Eagle, N., 2010. Mobility profiler: A framework for discovering mobility profiles of cell phone users. Pervasive and Mobile Computing, 6(4), 435-454.
[5] Cortes, C., & Vapnik, V., 1995. Support-vector networks. Machine Learning, 20(3), 273- 297.
[6] Chang, C. C., & Lin, C. J., 2011. LIBSVM: A library for support vector machines. ACM Transactions on Intelligent Systems and Technology (TIST), 2(3), 27.
[7] Chen, C., Bian, L., & Ma, J., 2014. From traces to trajectories: How well can we guess activity locations from mobile phone traces?. Transportation Research Part C: Emerging Technologies, 46, 326-337.
[8] Chen, C., Ma, J., Susilo, Y., Liu, Y., & Wang, M., 2016. The promises of big data and small data for travel behavior (aka human mobility) analysis. Transportation Research Part C: Emerging Technologies, 68, 285-299.
[9] Chung, J., Gulcehre, C., Cho, K., & Bengio, Y., 2014. Empirical evaluation of gated recurrent neural networks on sequence modeling. arXiv preprint arXiv:1412.3555.
[10] Devillaine, F., Munizaga, M., & Trépanier, M., 2012. Detection of activities of public transport users by analyzing smart card data. Transportation Research Record, 2276(1), 48-55.
[11] Dong, H., Wu, M., Ding, X., Chu, L., Jia, L., Qin, Y., & Zhou, X., 2015. Traffic zone division based on big data from mobile phone base stations. Transportation Research Part C: Emerging Technologies, 58, 278-291.
[12] Demissie, M. G., Antunes, F., Bento, C., Phithakkitnukoon, S., & Sukhvibul, T., 2016. Inferring origin-destination flows using mobile phone data: A case study of Senegal. In 2016 13th International Conference on Electrical Engineering/Electronics, Computer, Telecommunications and Information Technology (ECTI-CON), 1-6. IEEE.
[13] Fang, S. H., Liao, H. H., Fei, Y. X., Chen, K. H., Huang, J. W., Lu, Y. D., & Tsao, Y., 2016. Transportation modes classification using sensors on smartphones. Sensors, 16(8), 1324.
[14] Fang, S. H., Fei, Y. X., Xu, Z., & Tsao, Y., 2017. Learning transportation modes from smartphone sensors based on deep neural network. IEEE Sensors Journal, 17(18), 6111-6118.
[15] Graves, A., & Schmidhuber, J., 2005. Framewise phoneme classification with bidirectional LSTM and other neural network architectures. Neural Networks, 18(5-6), 602-610.
[16] Glorot, X., Bordes, A., & Bengio, Y., 2011. Deep sparse rectifier neural networks. In: Proceedings of the fourteenth international conference on artificial intelligence and statistics, 315-323.
[17] Gong, Y., Zhao, F., Chen, S., & Luo, H., 2017. A convolutional neural networks based transportation mode identification algorithm. In: 2017 International Conference on Indoor Positioning and Indoor Navigation (IPIN), 1-7.
[18] Hochreiter, S., & Schmidhuber, J., 1997. Long short-term memory. Neural Computation, 9(8), 1735-1780.
[19] Hinton, G. E., & Salakhutdinov, R. R., 2006. Reducing the dimensionality of data with neural networks. Science, 313(5786), 504-507.
[20] Holleczek, T., Yu, L., Lee, J. K., Senn, O., Ratti, C., & Jaillet, P., 2014. Detecting weak public transport connections from cellphone and public transport data. In: Proceedings of the 2014 International Conference on Big Data Science and Computing, No. 9. ACM.
[21] Institute of Transportation, Ministry of Transportation and Communications (MOTC), Taiwan, 2016.09, The 5th Taiwan Area Comprehensive Transportation Planning Research Series - Intercity travel analysis and additional survey.
[22] Institute of Transportation, Ministry of Transportation and Communications (MOTC), Taiwan, 2018.12, Comprehensive Transportation Planning of Northern Taiwan – Travel Survey and Demand & Supply Analysis.
[23] Iovan, C., Olteanu-Raimond, A. M., Couronné, T., & Smoreda, Z., 2013. Moving and calling: Mobile phone data quality measurements and spatiotemporal uncertainty in human mobility studies. In: Vandenbroucke D., Bucher B., Crompvoets J. (eds) Geographic Information Science at the Heart of Europe, 247-265. Springer, Cham.
[24] Iqbal, M. S., Choudhury, C. F., Wang, P., & González, M. C., 2014. Development of origin–destination matrices using mobile phone call data. Transportation Research Part C: Emerging Technologies, 40, 63-74.
[25] Jahangiri, A., & Rakha, H., 2014. Developing a support vector machine (SVM) classifier for transportation mode identification by using mobile phone sensor data. In: Transportation Research Board 93rd Annual Meeting, No. 14-1442.
[26] Karlik, B., & Olgac, A. V., 2011. Performance analysis of various activation functions in generalized MLP architectures of neural networks. International Journal of Artificial Intelligence and Expert Systems, 1(4), 111-122.
[27] Krizhevsky, A., Sutskever, I., & Hinton, G. E., 2012. Imagenet classification with deep convolutional neural networks. In: Advances in Neural Information Processing Systems, 25, 1097-1105.
[28] Ma, X., Liu, C., Wen, H., Wang, Y., & Wu, Y. J., 2017. Understanding commuting patterns using transit smart card data. Journal of Transport Geography, 58, 135-145.
[29] Nam, D., Kim, H., Cho, J., & Jayakrishnan, R., 2017. A model based on deep learning for predicting travel mode choice. In: Proceedings of the Transportation Research Board 96th Annual Meeting Transportation Research Board, Washington, DC, USA, 8-12.
[30] Park, J. Y., Kim, D. J., & Lim, Y., 2008. Use of smart card data to define public transit use in Seoul, South Korea. Transportation Research Record, 2063(1), 3-9.
[31] Qu, Y., Gong, H., & Wang, P., 2015. Transportation mode split with mobile phone data. In: 2015 IEEE 18th international conference on intelligent transportation systems, 285-289. IEEE.
[32] Reades, J., Calabrese, F., & Ratti, C., 2009. Eigenplaces: Analysing cities using the space–time structure of the mobile phone network. Environment and Planning B: Planning and Design, 36(5), 824-836.
[33] Steinwart, I., & Christmann, A., 2008. Support vector machines. Springer Science & Business Media.
[34] Tettamanti, T., Demeter, H., & Varga, I., 2012. Route choice estimation based on cellular signaling data. Acta Polytechnica Hungarica, 9(4), 207-220.
[35] Vapnik, V., Golowich, S. E., & Smola, A. J., 1997. Support vector method for function approximation, regression estimation and signal processing. In: Advances in Neural Information Processing Systems, 9, 281-287.
[36] Van Lint, J. W. C., Hoogendoorn, S. P., & Van Zuylen, H. J., 2002. Freeway travel time prediction with state-space neural networks: modeling state-space dynamics with recurrent neural networks. Transportation Research Record, 1811(1), 30-39.
[37] Wang, H., Calabrese, F., Di Lorenzo, G., & Ratti, C., 2010. Transportation mode inference from anonymized and aggregated mobile phone call detail records. In: 13th International IEEE Conference on Intelligent Transportation Systems, 318-323. IEEE.
[38] Wang, H., Liu, G., Duan, J., & Zhang, L., 2017. Detecting transportation modes using deep neural network. IEICE TRANSACTIONS on Information and Systems, 100(5), 1132-1135.
[39] Wang, F., & Chen, C., 2018. On data processing required to derive mobility patterns from passively-generated mobile phone data. Transportation Research Part C: Emerging Technologies, 87, 58-74.
[40] Zheng, Y., Liu, L., Wang, L., & Xie, X., 2008. Learning transportation mode from raw GPS data for geographic applications on the web. In: Proceedings of the 17th international conference on World Wide Web, 247-256. ACM.
|