以作者查詢圖書館館藏 、以作者查詢臺灣博碩士 、以作者查詢全國書目 、勘誤回報 、線上人數:166 、訪客IP:3.144.224.37
姓名 曾紹倫(Shao-Lun Tseng) 查詢紙本館藏 畢業系所 土木工程學系 論文名稱 壓重對離岸風機單樁基礎液化行為之影響-離心模型試驗結果 相關論文 檔案 [Endnote RIS 格式] [Bibtex 格式] [相關文章] [文章引用] [完整記錄] [館藏目錄] 至系統瀏覽論文 (2025-4-7以後開放) 摘要(中) 近年來政府推廣綠色能源建置離岸風場,離岸風力發電機於台灣屬於剛起步階段,有別於其他國家在離岸風機基座的設置上,還需考慮受震後行為及對抗液化的能力,本研究以拋石方式作為研究對象,探討其對液化地盤的影響。
主要以探討離岸風機樁基礎於不同厚度之液化砂土層中,受震時,施作拋石範圍大小對樁基礎之影響。在80 g 的離心加速度下,使用積層版試驗箱作為本研究試驗箱,土層上方使用相對密度50%來模擬液化層,下方使用相對密度90%來模擬承載層,並於樁周放置礫石,來模擬現地拋石之情形。
試驗結果顯示: 1.於此試驗液化土層20m及30m Hanning wave 1Hz 事件中,放置拋石試驗的上部結構加速度會較無放置拋石試驗出現顯著的放大。2.於本試驗 Hanning wave 1Hz 震動事件中,當拋石範圍愈大,液化土層內的樁身彎矩值會愈大。3.於此試驗Hanning wave 1Hz 震動事件中,上部結構與樁身最大彎矩值呈現高度正相關。得出上部結構出現較大加速度(慣性力)有較大的樁身彎矩值。由於樁身彎矩值會隨著震度加大而變大,遂於設計時,上部結構要抵抗較大震度時,基礎結構能夠承受最大彎矩值也需要做增加。4.於此試驗Hanning wave 1Hz 震動事件中,有拋石試驗孔隙水壓比會較無拋石試驗中的超額孔隙水壓比大。位於液化土層深層的位置,樁周圍之超額孔隙水壓比會大於自由場之超額孔隙水壓比。5.於本試驗液化土層20m及30m試驗中有拋石的情況下,塔架所產生的殘餘位移量會大於無拋石的情況。
摘要(英) In recent years, the government of Taiwan has encouraged the construction of green energy and wind farms. Offshore wind turbine technology is at an early stage in Taiwan. At the foundation, offshore wind turbines have some differences compared to other countries, it must take into account earthquakes and liquefaction capacity. In this thesis, the topic of riprap improves the impact of liquefaction on the foundation of the structure.
This study focuses on the foundation of the offshore wind turbine at different depths of the liquefaction layer and uses different sizes of riprap range. Using a laminar box in a gravity field eighty times to prepare experiments. The relative density 50% above the soil layer is used to simulate the liquefied layer and the relative density 90% is used to simulate the bearing layer. Then, the gravel is placed around the pile to simulate the riprap on the seabed.
Based on the model test results, the following conclusions are made:
1. In 1Hz Hanning wave of 20m and 30m liquefaction layer, com-pared to the acceleration of the upper turbine without riprap, the one with riprap is obviously increased.
2. In 1Hz Hanning wave, when the riprap area is larger, the bending moment of the liquefaction layer will be larger.
3. In 1Hz Hanning wave, the acceleration of upper turbine and the bending moment maximum of pile are highly relevant. For ex-ample, when the acceleration of upper turbine is larger, the bending moment will also be larger. As a result, when the upper turbine needs to resist larger acceleration, the capacity of bending moment maximum for the pile should be increased.
4. In 1Hz Hanning wave, excess pore water pressure ratio of the experiment with riprap is larger than the one without riprap. At the deep liquefaction layer, excess pore water pressure ratio around the pile is larger than in the free-field.
5. In the experiment of 20m and 30m liquefaction layer, the residual displacement caused by tower of the condition with Riprap will be larger than the one without Riprap.
關鍵字(中) ★ 離岸風機
★ 單樁基礎
★ 土壤液化
★ 離心振動台試驗關鍵字(英) ★ offshore wind turbine
★ mono-pile
★ soil liquefaction
★ centrifuge shaking table test論文目次 摘要 I
Abstract II
誌謝 IV
目錄 V
圖目錄 VIII
表目錄 XIII
符號說明 XIV
第一章 緒論 1
1-1 研究動機與目的 1
1-2 研究方法 2
1-3 論文架構 2
第二章 文獻回顧 3
2-1 土壤液化 3
2-2 離心機模型試驗原理 3
2-2-1 離心模型之基本相似律 5
2-2-2 離心模型之基本靜態相似律 6
2-3 風機結構自然頻率 9
2-4 樁基礎受震反應機制 10
2-5 樁基礎於離心機模型試驗之相關研究 10
2-6 離岸風力機組之基礎支撐型式 12
2-7 由基礎荷重所引致應力增量 16
2-8 國內規範 23
第三章 試驗方法與試驗設備 24
3-1 試驗方法 24
3-2 試驗砂樣的基本力學性質 24
3-3 試驗儀器及相關設備 26
3-3-1 地工離心機 26
3-3-2 單軸向震動掛台 27
3-3-3 自動控制與資料擷取器 31
3-3-4 各式量測儀器 33
3-3-5 風機樁模型製作及校正 36
3-3-6 積層版試驗箱 41
3-3-7 移動式霣降儀 42
3-4 試驗步驟與流程 44
3-4-1 試驗箱之組立 46
3-4-2 砂試體之製作 48
3-4-3 土壤試體飽和 50
3-4-4 繞機前準備及繞機 52
第四章 試驗結果與分析 54
4-1 試驗規劃與內容 54
4-2 超額孔隙水壓比歷時 58
4-3 拋石引致土體中垂直應力之增加 59
4-4 試驗條件 61
4-5 液化深度20m輸入震動與各感測器歷時之比較 65
4-5-1 S2主震各感測器歷時 67
4-5-2 S4主震各感測器歷時 74
4-5-3 S8主震各感測器歷時 82
4-6 液化深度30m輸入震動與各感測器歷時之比較 90
4-6-1 S2主震各感測器歷時 91
4-6-2 S4主震各感測器歷時 99
4-6-3 S8主震各感測器歷時 107
4-7 真實地震試驗結果 115
4-7-1 液化深度20m真實地震試驗結果 115
4-7-2 液化深度30m真實地震試驗結果 123
4-8 綜合討論 131
4-8-1 上部結構加速度之比較 131
4-8-2 樁身彎矩值之關係 138
4-8-3 拋石對水壓激發之影響 142
4-8-4 樁基礎周圍與自由土層地表沉陷量 150
4-8-5 樁身殘餘旋轉角 151
4-8-6 樁系統與土層自然頻率 159
第五章 結論與建議 165
5-1 結論 165
5-2 建議 165
參考文獻 167
附錄A 170
A-1風機單樁基礎離心模型設計 170
A-2各組試驗之主頻 175
參考文獻 1. Abdoun, T. and Dobry, R.D., “Evaluation of pile foundation response to lateral spreading,” Soil Dynamics and Earthquake Engineering, Vol. 25, pp.1051-1058. (2002).
2. Andersen, V., Vahdatirad, M.J., Sichani, M.T. and Sørensen J.D., “Natural frequencies of wind turbines on monopile foundationsin clayey soils—A probabilistic approach.” Computers and Ge-otechnics, Vol. 43, pp.1-11. (2012).
3. API, “Recommended practice for planning, designing, and con-struction fixed offshore platforms-working stress design,” (2000).
4. Arshad, M. and O’Kelly, B.C., “Offshore wind turbine struc-tures: a review,” Energy, ICE, Vol. 166, No.4, pp. 139–149 (2013).
5. Bhattacharya, S., Wood, D.M., and Lombardi, D., “Similitude relationships for physical modelling of mono pile-supported offshore wind turbines,” International Journal of Physical Mod-elling in Geotechnics, Vol.11, No.2, pp.58-68 (2011).
6. Boulanger, R.W., Curras, C.J., Kutter, B.L., Wilson, D.W. and Abghari, A., “Seismic soil-piles -tructure interaction experiments and analysis.” Journal Geotechnical and Geoenvironmental En-gineering, Vol. 125, pp.750-9. (1999).
7. Braja, M.D., Principles of Foundation Engineering, 6e, cengage learning,Nelson Canada, pp.119 –124 (2007).
8. Iai, S., Tobita, T., and Nakahara, T., “Generalised scaling rela-tions for dynamic centrifuge tests,” Geotechnique, ICE, Vol. 55, No.5, pp. 355–362 (2005).
9. Kichio, S., Ryouichi, B. and Yoshio, S., “Liquefaction Tests by a Laminar Box in a Centrifuge,” Missouri University of Science and Technology, Missouri, Tokyo, Japan, pp.225-228 (1991).
10. Kirkwood, P.B., and Haigh, S.K., “Centrifuge testing of mono-piles subject to cyclic lateral loading,” Cambridge University Engineering Department, Cambridge, U.K., pp.1-5 (2012).
11. Klinkvort, R. T., Leth, C. T. and Hededal, O., “Centrifuge mod-elling of monopiles in dense sand at The Technical University of Denmark,” Technical University of Denmark, Copenhagen, Denmark, pp. 1-8 (2012).
12. LeBlance, C., “Design of Offshore Wind Turbine Support Structures – Selected Topics in the Field of Geotechnical Engi-neering,”. Ph.D. Dissertation, Department of Civil Engineering, Aalborg University, Aalborg, Denmark. (2009).
13. Sharp, M. K., Dobry, R., and Ebetter, R., “Centrifuge research of liquefaction phenomena,” 12WCEE, Auckland, New Zealand, pp. 1-7 (2000).
14. Tokimatsu, K., Suzuki, H. and Sato, M., “Effects of inertial and kinematic interaction on seismic behavior of pile with embedded foundation,” Soil Dynamics and Earthquake Engineering, Vol. 25, pp.753-762. (2005).
15. Yun, W. C., and Kim D., “Experimental Development of the p-y Relationship for Large-Diameter Offshore Monopiles in Sands: Centrifuge Tests” Journal of Geotechnical and Geoenvironmental Engineering, Vol. 142, No.1, pp. 2-4. (2016).
16. 吳宇浩,「液化地盤群樁基礎地震反應之模擬」,碩士論文,國立中央大學土木工程學系,中壢(2014)。
17. 周廷韋,「以離心模型試驗擬基樁反覆抗壓及拉拔之行為」,碩士論文,國立中央大學土木工程學系,中壢 (2008)。
18. 呂昕澔,「以離心模型模擬離岸風機單樁受單向反覆水平側推行為」,碩士論文,國立中央大學土木工程學系,中壢 (2014)。
19. 李政鋼,「液化地盤離岸風機單樁基礎之離心模型試驗」,碩士論文,國立中央大學土木工程學系,中壢(2019)。
20. 呂振榮,「以動態離心試驗模擬可液化地盤中離岸風機單樁基礎之受震反應」,碩士論文,國立中央大學土木工程學系,中壢 (2014)。
21. 李崇正、洪汶宜、莊汶雅 、魏雨辰、陳福勝、吳文隆 、蔡立盛,「離心機試驗探討隧道承載土層液化行為」,中華技術,第93期,第165-177頁 (2012)
22. 邱笙輔,「以動態離心模型試驗模擬淺基礎建築物於層狀液化地盤之受震反應」,碩士論文,國立中央大學土木工程學系,中壢 (2018)。
23. 凃亦峻,「位於可液化砂土層中單樁基礎受震反應的離心模擬」,碩士論文,國立中央大學土木工程學系,中壢(2011)。
24. 陳正興、翁作新、陳家漢,「飽和砂土層中模型樁振動台試驗」,國家地震工程研究中心簡訊,第 70期,第1-2 頁(2009)。
25. 楊宗翰,「具不同上部結構之樁基礎受振行為」,碩士論文,國立中央大學土木工程學系,中壢 (2015)。
26. 蔡晨暉,「以離心模型試驗模擬沉箱式碼頭之受震行為」,碩士論文, 國立中央大學土木工程學系,中壢(2010)。
27. 賴信成,「以有效應力分析群樁-結構物-土壤於受震下之互制反應」,碩士論文,高雄第一科技大學營建工程系,高雄 (2008)。
指導教授 黃俊鴻(Jin-Hung Hwang) 審核日期 2020-4-13 推文 facebook plurk twitter funp google live udn HD myshare reddit netvibes friend youpush delicious baidu 網路書籤 Google bookmarks del.icio.us hemidemi myshare