博碩士論文 104681602 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:235 、訪客IP:18.118.162.180
姓名 阮立錫福(Nguyen Ly Sy Phu)  查詢紙本館藏   畢業系所 大氣科學學系
論文名稱
(Characterizations of atmospheric mercury concentration and deposition at a tropical mountain background site in East Asia: insight into potential driving mechanisms)
相關論文
★ 鹿林山大氣汞分布與乾濕沉降特徵及來源推估★ 北台灣雨水汞濃度及濕沉降量之時空分布
★ 2009-2018年台灣市區與郊區之長期大氣汞濕沉降測量★ 鹿林山大氣汞分布變化: 氣象因子影響機制分析
★ 桃園大氣汞分布與沈降暨顆粒汞粒徑分布特徵★ 鹿林山大氣汞濃度年際變化分析與可能影響因子探討
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 全球人為排放清單指出亞洲,特別在東亞和東南亞區域是人為大氣汞排放量最大的區域,此外,近年觀測與模式結果顯示熱帶森林可能是大氣汞主要沈降區。但是,關於上述區域大氣汞濃度和大氣汞沈降的長期研究仍十分有限。本研究首次於熱帶高山森林區,東亞大陸下風處之鹿林山大氣背景監測站(Lulin Atmospheric Background Station, LABS)分析大氣汞物種長期分布與大氣汞乾濕沈降。
大氣汞趨勢分析依據氣態元素汞(GEM)夜間(0-8時)觀測濃度,夜間GEM濃度主要受到區域性大氣影響,2006年4月至2016年12月間GEM濃度呈現顯著下降,與近期文獻指出東亞大氣汞排放輸出量降低相符。氣團來源與傳輸途徑之頻率分佈也可能導致GEM分佈變化,此外,觀測到海洋性氣團中大氣汞濃度呈現下降趨勢,顯示北半球大氣汞背景濃度亦呈現下降趨勢。LABS觀測到大氣汞乾濕沈降比為2.8,顯示森林區域大氣汞沈降機制主要為乾沈降。 LABS大氣汞乾濕沈降量均高於溫帶地區沈降量,指出東亞和東南亞熱帶高山森林區可能是大氣汞沈降熱點。降雨量和降雨型態是大氣汞濕沈降季節變化的重要因素,然而,大氣汞乾沈降季節變化則由大氣汞濃度、氣溫和風速控制,GEM為乾沈降主要物種,經葉子吸收,因此植被活動強度在森林生態系統中為控制大氣汞乾沈降的重要機制。利用一年氣態總汞(total gaseous mercury, TGM)同位素監測數據探討驅動LABS的TGM同位素組成變化因素。結果顯示,δ202HgTGM濃度變化與植被活動相關,而Δ199HgTGM的濃度季節變化可能受到氣團來源和傳輸途徑的季節變化影響。因此,這項監測證明了LABS植被活動對總汞分布的作用。以個案研究探討LABS於生質燃燒長程傳輸期間大氣汞與氣膠光學參數之間的關係。發現R2介於0.12至0.7,說明含碳氣膠和汞不僅來自相同來源,而且可能存在於相似的生質燃燒氣膠庫中。此外,顆粒汞與Ångström 吸收指數(AAE370-880)之間的正相關性意味著二價氧化汞可能更容易被有機氣膠吸收。
摘要(英) Global anthropogenic emission inventories indicated that Asia is the region with the greatest proportion of anthropogenic mercury (Hg) emissions to the atmosphere, particularly in East and Southeast Asia. In addition, recent observation and modeling studies suggested that tropical forest areas may be hotspots of atmospheric Hg depositions. However, long-term studies on atmospheric Hg concentration and deposition in these regions are still quite limited. This work, for the first time, presents and analyzes the long-term observation of speciated atmospheric Hg, wet and dry deposition of atmospheric Hg at Lulin Atmospheric Background Station (LABS), a high mountain tropical forest site downwind of the East Asian continent. Nighttime (0–8 am) data of gaseous elemental Hg (GEM), which is more representative of regional influence, between April 2006 and December 2016 were used for trend analysis. Significant decreasing trends in GEM concentrations at LABS were observed, in agreement with the reductions in atmospheric Hg export from the East Asia continent that has been suggested by recent studies. Changes in the frequency distribution of air mass origins and transport paths may also contribute to the changes in GEM concentrations at LABS. Besides, the decreasing trends observed with air from the ocean indicated declining background GEM concentrations in Northern Hemisphere. Multi-year of dry and wet Hg depositions at LABS were studied. The dry/wet deposition ratio of 2.8 was observed, indicating that Hg deposition to forest landscape was governed by dry rather than wet deposition. Both dry and wet Hg depositions at LABS were higher than those reported from the temperate region, suggesting that tropical forest mountains in East and Southeast Asia could be hot spots of atmospheric Hg deposition. Rainfall amount and rainfall types were the important factors in determining the seasonal distribution of wet Hg deposition. On the other hand, the seasonal distribution of dry Hg deposition was controlled by atmospheric Hg concentrations, temperature, and wind speed. GEM was the major dry deposition contributor at LABS, suggesting the important role of vegetation activity in forest ecosystems due to the uptake of Hg(0) by foliage. One-year observation data of total gaseous mercury (TGM) isotopic compositions were used to investigate the drivers responsible for the variation of TGM isotopic compositions at LABS. The results indicated that the variability of δ202HgTGM was attributed to vegetation activity, whereas the seasonal variation of ∆199HgTGM was likely driven by the seasonal changes in air mass origins and transport paths. This study, therefore, provides observational evidence for the role of vegetation activity at LABS. A case study was conducted to explore the relationship between atmospheric Hg and aerosol optical parameters during the biomass burning (BB) long-range transport periods at LABS. Positive correlations were found with R2 ranging from 0.12 to 0.7, suggesting carbonaceous aerosols and Hg are not only simultaneously emitted from the same source but also could reside in a similar pool of BB aerosols. Additionally, the positive correlation between particulate bound Hg (PBM) and absorption Ångström exponent (AAE370-880) likely suggests that the Hg(II) may be preferably absorbed by organic aerosols.
關鍵字(中) ★ 大氣汞
★ 東亞
★ 汞沈降
★ 汞同位素組成
★ 生質燃燒
關鍵字(英) ★ Atmospheric Mercury
★ East Asia
★ Mercury Deposition
★ Mercury isotopic compositions
★ Biomass Burning
論文目次 List of Tables xi
List of Figures xii
Chapter I. Introduction .1
I.1. Mercury in the atmosphere .1
I.2. Trends in anthropogenic emissions and atmospheric concentration of mercury .4
I.3. Atmospheric deposition of mercury .7
I.4. Role of forest ecosystems in global mercury cycle 10
I.5. Mercury isotopic composition 11
I.6. Receptor-based source apportionment for mercury 14
I.7. Biomass burning and the relationship between atmospheric mercury and aerosol optical parameters 15
I.8. Outline of the present work 16
Chapter II. Temporal changes in atmospheric mercury concentrations at a background mountain site downwind of the East Asia continent in 2006–2016 20
II.1. Introduction 20
II.2. Site and methods 22
II.2.1. Site description 22
II.2.2. Atmospheric mercury measurements 23
II.2.3. Data process 24
II.2.4. Backward trajectory analysis and source region identification 25
II.3. Results and discussion 26
II.3.1. GEM data summary and seasonal distribution 26
II.3.2. Trend in nighttime gem between 2006 and 2016 27
II.3.3. Source region characterization and gem trends 29
II.3.4. Changes in frequency distribution of air mass origins on gem monthly pattern 33
II.4. Conclusions 35
Chapter III. Four-year measurements of wet mercury deposition at a tropical mountain site in central Taiwan 47
III.1. Introduction 47
III.2. Site and methods 50
III.2.1. Site description 50
III.2.2. Rainwater sampling and Hg analysis 50
III.2.3. Wet Hg deposition flux 52
III.2.4. Backward trajectory analysis 52
III.3. Results and discussion 52
III.3.1. Rainwater Hg concentrations 52
III.3.2. Wet Hg deposition fluxes 54
III.3.3. Temporal patterns of wet Hg deposition 56
III.3.4. Influence of rainfall types on rainwater Hg concentration 59
III. 4. Conclusions 61
Chapter IV. Eight-year dry deposition of atmospheric mercury to a tropical high mountain background site downwind of the East Asian continent 73
IV.1. Introduction 73
IV.2. Methodology 75
IV.2.1. Site description 75
IV.2.2. Atmospheric Hg measurement 75
IV.2.3. Mercury dry deposition estimation 76
IV.2.4. Mercury wet deposition measurement 78
IV.3. Results and discussion 78
IV.3.1. Summary of atmospheric Hg concentrations 78
IV.3.2. Estimated mercury dry deposition 80
IV.3.3. Total (dry + wet) Hg deposition 86
IV.4. Conclusions 87
Chapter V. Isotopic composition of total gaseous mercury at a high-altitude tropical forest site in East Asia: implication for mercury sources and environmental processes 95
V.1. Introduction 95
V.2. Site and methods 98
V.2.1. Site description 98
V.2.2. Atmospheric mercury measurements 99
V.2.3. Backward trajectory and potential source identification 100
V.2.4. Atmospheric TGM collection and processing for isotope analysis 101
V.2.5. Mercury isotope analysis 102
V.2.6. Quantification of vegetation activity, anthropogenic Hg emission, and oceanic air mass 103
V.3. Results and discussion 104
V.3.1. General characteristics of speciated atmospheric Hg and potential sources of GEM 104
V.3.2. TGM isotope compositions 105
V.3.3. Seasonal variation in TGM isotopic compositions 108
V.4. Conclusions 113
Chapter VI. Relationships between atmospheric mercury and optical properties of spring outflow aerosols from Southeast Asia 129
VI.1. Introduction 129
VI.2. Methodology 131
VI.2.1. Atmospheric Hg measurement 131
VI.2.2. Aerosol carbonaceous content 131
VI.2.3. Light absorption measurements and related aerosol optical parameters 132
VI.2.4. Biomass burning period identification 133
VI.3. Results and discussion 133
VI.3.1. The correlation between Delta-C, AAE370-880 and PBM/GOM 133
VI.3.2. Implication of the partitioning of Hg to organic carbon (OC) 136
VI.4. Conclusions 137
Chapter VII. Conclusions and significance of study 142
List of publications in 2016-2019 147
References 148
參考文獻 Abbott, M.L., Lin, C.-J., Martian, P., Einerson, J.J., 2008. Atmospheric mercury near Salmon Falls Creek Reservoir in southern Idaho. Appl. Geochem., 23, 438–453.
Agnan, Y., Le Dantec, T., Moore, C.W., Edwards, G.C., Obrist, D., 2016. New constraints on terrestrial surface-atmosphere fluxes of gaseous elemental mercury using a global database. Environ. Sci. Technol. 50, 507–524.
Akagi, S.K., Yokelson, R.J., Wiedinmyer, C., Alvarado, M.J., Reid, J.S., Karl, T., Crounse, J.D., Wennberg, P.O., 2011. Emission factors for open and domestic biomass burning for use in atmospheric models. Atmos. Chem. Phys. 11, 4039–4072.
Allen, G., Babich, P., Poirot, R., 2004. Evaluation of a New Approach for Real Time Assessment of Wood Smoke PM. J. AIR WASTE MANAGE, Visibility Specialty Conference on Regional and Global Perspectives on Haze: Causes, Consequences and Controversies, Asheville, NC.
AMAP/UNEP, 2013. Geospatially distributed mercury emissions dataset 2010v1.
Amos, H.M., Jacob, D.J., Holmes, C.D., Fisher, J.A., Wang, Q., Yantosca, R.M., Corbitt, E.S., Galarneau, E., Rutter, A.P., Gustin, M.S., Steffen, A., Schauer, J.J., Graydon, J.A., Louis, V.L.S., Talbot, R.W., Edgerton, E.S., Zhang, Y., Sunderland, E.M., 2012. Gas-particle partitioning of atmospheric Hg(II) and its effect on global mercury deposition. Atmos. Chem. Phys. 12, 591–603.
Amos, H.M., Jacob, D.J., Streets, D.G., Sunderland, E.M., 2013. Legacy impacts of all-time anthropogenic emissions on the global mercury cycle. Glob. Biogeochem. Cycles, 27, 1–12.
Amos, H.M., Sonke, J.E., Obrist, D., Robins, N., Hagan, Horowitz, N., Mason, R.P., Witt, M., 2015. Observational and modeling constraints on global anthropogenic enrichment of mercury. Environ. Sci. Technol. 49, 4036–4047.
Ariya, P.A., Amyot, M., Dastoor, A., Deeds, D., Feinberg, A., Kos, G., Poulain, A., Ryjkov, A., Semeniuk, K., Subir, M., Toyota, K., 2015. Mercury physicochemical and biogeochemical transformation in the atmosphere and at atmospheric interfaces: a review and future directions. Chem. Rev. 115, 3760–3802.
Bergquist, B.A., Blum, J.D., 2007. Mass-dependent and –independent fractionation of Hg isotopes by photoreduction in aquatic systems. Science, 318, 417–420.
Bian, Q., Jathar, S.H., Kodros, J.K., Barsanti, K.C., Hatch, L.E., May, A.A., Kreidenweis, S.M., Pierce, J.R., 2017. Secondary organic aerosol formation in biomass-burning plumes: theoretical analysis of lab studies and ambient plumes. Atmos. Chem. Phys.17, 5459–5475.
Blum, J. D., Bergquist, B. A., 2007. Reporting the variations in the natural isotopic composition of mercury. Anal. Bioanal. Chem. 388, 353–359
Blum, J.D., Johnson, M.W., 2017. Recent developments in mercury stable isotope analysis. Rev. Mineral. Geochem. 82, 733–757.
Blum, J.D., Sherman, L.S., Johnson, M.W., 2014. Mercury Isotopes in Earth and Environmental Sciences. In Annu. Rev. Earth Planet. Sci., Jeanloz, R., Ed. 42, 249–269.
Brooks, S., Ren, X.R., Cohen, M., Luke, W.T., Kelley, P., Artz, R., Hynes, A., Landing, W., Martos, B., 2014. Airborne vertical profiling of mercury speciation near Tullahoma, TN, USA. Atmosphere, 5, 557–574.
Brunke, E., Walters, C., Mkololo, T., Martin, L., Labuschagne, C., Silwana, B., Slemr, F., Weigelt, A., Ebinghaus, R., Somerset, V., 2016. Mercury in the atmosphere and in rainwater at Cape Point, South Africa. Atmos. Environ. 125, 24–32.
Buchachenko, A.L., 2009. Mercury isotope effects in the environmental chemistry and biochemistry of mercury-containing compounds. Russian Chemical reviews, 78, 319–328.
Calvo, A.I., Alves, C., Castro, A., Pont, V., Vicente, A.M., Fraile, R., 2013. Research on aerosol sources and chemical composition: past, current and emerging issues. Atmos. Res. 120–121, 1–28.
Celâl Şengör, A.M., Chandrasekhar, S., Spencer, J.E., Beaufort, L.F., Gourou P., Yefemov, Y.K., Ryabchikov, A.M., Alexeeva, N.N., Owen, L., Chapman, G.P., Leinbach, T.R., Narasimhan, C.V., Pannell, C.W., 2019. Asia. https://www.britannica.com/place/Asia/Climate.
Chand, D., Jaffe, D., Prestbo, E., Swartzendruber, P.C., Hafner, W., Weiss-Penzias, P., Kato, S., Takami, A., Hatakeyama, S., Kajii, Y., 2008. Reactive and particulate mercury in the Asian marine boundary layer. Atmos. Environ. 42, 7988–7996.
Chen, J., Hintelmann, H., Feng, X., Dimock, B., 2012. Unusual fractionation of both odd and even mercury isotopes in precipitation from Peterborough, ON, Canada. Geochim. Cosmochim. Acta, 90, 33–46.
Chen, L., Liang, S., Zhang, Y., Liu, M., Meng, J., Zhang, H., Tang, X., Li, Y., Tong, Y., Zhang, W., Wang, X., Shu, J., 2018. Atmospheric mercury outflow from China and interprovincial trade. Environ. Sci. Technol. 52, 13792–13800.
Chen, L., Wang, H.H., Liu, J.F., Tong, Y.D., Ou, L.B., Zhang, W., Hu, D., Chen, C., Wang, X.J., 2014. Intercontinental transport and deposition patterns of atmospheric mercury from anthropogenic emissions. Atmos. Chem. Phys. 14, 10163−10176.
Chen, L., Zhang, Y., Jacob, D.J., Soerensen, A.L., Fisher, J.A., Horowitz, H.M., Corbitt, E.S., Wang, X.A., 2015. Decline in Arctic Ocean mercury suggested by differences in decadal trends of atmospheric mercury between the Arctic and northern midlatitudes. Geophys. Res. Lett. 42, 6076–6083.
Cheng, I., Xu, X., Zhang, L., 2015. Overview of receptor-based source apportionment studies for speciated atmospheric mercury. Atmos. Chem. Phys. 15, 7877–7895.
Cheng, I., Zhang, L., 2017. Uncertainty assessment of gaseous oxidized mercury measurements collected by Atmospheric Mercury Network. Environ. Sci. Technol. 51, 855–862.
Cheng, I., Zhang, L., Blanchard, P., 2014a. Regression modeling of gas-particle partitioning of atmospheric oxidized mercury from temperature data. J. Geophys. Res. 119, 11864–11876.
Cheng, T.-C., Yen, M.-C., Tsay, J.-D., Liao, C.-C., Takle, E.S., 2014b. Impact of the afternoon thunderstorm on the land-sea breeze in the Taipei basin during summer: An experiment. J. Appl. Meteor. Climatol. 53, 1714–1737.
Cheng, I., Zhang, L., Blanchard, P., Dalziel, J., Tordon, R., 2013. Concentration-weighted trajectory approach to identifying potential sources of speciated atmospheric mercury at an urban coastal site in Nova Scotia, Canada, Atmos. Chem. Phys. 13, 6031–6048.
Cheng, I., Zhang, L., Blanchard, P., Graydon, J.A., Louis, V.L.S., 2012. Source-receptor relationships for speciated atmospheric mercury at the remote Experimental Lakes Area, northwestern Ontario, Canada. Atmos. Chem. Phys. 12, 1903–1922.
Choi, H.D., Holsen, T.M., Hopke, P.K., 2008. Atmospheric mercury (Hg) in the Adirondacks: Concentrations and sources. Environ. Sci. Technol. 42, 5644–5653.
Chow, J.C., Watson, J.G., Kuhns, H.D., Etyemezian, V., Lowenthal, D.H., Crow, D.J., Kohl, S.D., Engelbrecht, J.P., Green, M.C., 2004. Source profiles for industrial, mobile, and area sources in the Big Bend Regional Aerosol Visibility and Observational study. Chemosphere, 54, 185–208.
Chow, J.C., Watson, J.G., Pritchett, L.C., Pierson, W.R., Frazier, C.A., Purcell, R.G., 1993. The DRI Thermal/Optical Reflectance carbon analysis system: description, evaluation and applications in U.S. air quality studies. Atmos. Environ. 27, 1185–1201.
Chuang, M.T., Chou, C.K., Sopajareepom, K., Lin, N.H., Wang, J.L., Sheu, G.R., Chang, Y.C., Lee, C.T., 2013. Characterization of aerosol chemical properties from nearsource biomass burning in Chiang Mai, Thailand during 7-SEAS/Dongsha experiment. Atmos. Environ. 78, 72–81.
Chuang, M.T., Lee, C.T., Lin, N.H., Chou, C.C.K., Wang, J.L., Sheu, G.R., Chang, S.C., Wang, S.H., Huang, H., Cheng, H.W., Weng, G.H., Lai, S.Y., Hsu, S.P., Chang, Y.J., 2014. Carbonaceous aerosols in the air masses transported from Indochina to Taiwan: long-term observation at mountain Lulin. Atmos. Environ. 89, 507–516.
Civerolo, K.L., Rattigan, O.V., Felton, H.D., Hirsch, M.J., DeSantis, S., 2014. Mercury wet deposition and speciated air concentrations from two urban sites in new york state: temporal patterns and regional context. Aerosol Air Qual. Res. 14, 1822–1837.
Cole, A.S., Steffen, A., 2010. Trends in long-term gaseous mercury observations in the Arctic and effects of temperature and other atmospheric conditions. Atmos. Chem. Phys. 10, 4661–4672.
Cole, A.S., Steffen, A., Eckley, C.S., Narayan, J., Pilote, M., Tordon, R., Graydon, J.A., St Louis, V.L., Xu, X.H., Branfireun, B.A.A., 2014. Survey of mercury in air and precipitation across Canada: patterns and trends. Atmosphere, 5, 635–668.
Cole, A.S., Steffen, A., Pfaffhuber, K.A., Berg, T., Pilote, M., Poissant, L., Tordon, R., Hung, H., 2013. Ten-year trends of atmospheric mercury in the high Arctic compared to Canadian sub-Arctic and mid-latitude sites. Atmos. Chem. Phys. 13, 1535–1545.
Cui, L., Feng, X., Lin, C.-J., Wang, X., Meng, B., Wang, X., Wang, H., 2014. Accumulation and translocation of 198Hg in four crop species, Environ. Toxicol. Chem. 33, 334–340.
De Simone, F., Artaxo, P., Bencardino, M., Cinnirella, S., Carbone, F., D’Amore, F., Dommergue, A., Feng, X.B., Gencarelli, C.N., Hedgecock, I.M., Landis, M.S., Sprovieri, F., Suzuki, N., Wängberg, I., Pirrone, N., 2017. Particulate-phase mercury emissions from biomass burning and impact on resulting deposition: a modelling assessment. Atmos. Chem. Phys. 17, 1881–1899.
Demers, J.D., Blum, J.D., Zak, D.R., 2013. Mercury isotopes in a forested ecosystem: Implications for air-surface exchange dynamics and the global mercury cycle. Global Biogeochem. Cycles 27 (1), 222−238.
Demers, J.D., Sherman, L.S., Blum, J.D., Marsik, F.J., Dvonch, J.T., 2015. Coupling atmospheric mercury isotope ratios and meteorology to identify sources of mercury impacting a coastal urban-region near Pensacola, Florida, USA. Global Biogeochem. Cycles, 29, 1689–1705.
Draxler, R.R., Rolph, G.D., 2013. HYSPLIT (Hybrid Single-Particle Lagrangian Integrated Trajectory) Model Access via NOAA ARL READY. NOAA Air Resources Laboratory, Silver Spring, MD http://ready.arl.noaa.gov/HYSPLIT.php.
Driscoll, C.T., Mason, R.P., Chan, H.M., Jacob, D.J., Pirrone, N., 2013. Mercury as a global pollutant: sources, pathways, and effects. Environ. Sci. Technol. 47, 4967–4983.
Ebinghaus, R., Jennings, S.G., Kock, H.H., Derwent, R.G., Manning, A.J., Spain. T.G., 2011. Decreasing trends in total gaseous mercury observations in baseline air at Mace Head, Ireland from 1996 to 2009. Atmos. Environ. 45, 3475–3480.
Ebinghaus, R., Kock, H.H., Coggins, A.M., Spain, T.G., Jenning, S.G., Temme, Ch., 2002. Long-term measurements of atmospheric mercury at Mace Head, Irish west coast, between 1995 and 2001. Atmos. Environ. 36, 5267–5276.
Engle, M. A., Tate, M. T., Krabbenhoft, D. P., Schauer, J. J., Kolker, A., Shanley, J. B., Bothner, M. H., 2010. Comparison of atmospheric mercury speciation and deposition at nine sites across central and eastern North America, J. Geophys. Res. 115, D18306.
Enrico, M., Roux, G.L., Marusczak, N., Heimbürger, L.-E., Claustres, A., Fu, X., 2016. Atmospheric mercury transfer to peat bogs dominated by gaseous elemental mercury dry deposition. Environ. Sci. Technol. 50, 2405.
Ericksen, J.A., Gustin, M.A., 2004. Foliar exchange of mercury as a function of soil and air mercury concentrations. Sci. Total Environ. 324, 271–279.
Ericksen, J.A., Gustin, M.S., Schorran, D.E., Johnson, D.W., Lindberg, S.E., Coleman, J.S., 2003. Accumulation of atmospheric mercury in forest foliage. Atmos. Environ. 37, 1613–1622.
Evers, D.C., Han, Y.-J., Driscoll, C.T., Kamman, N.C., Goodale, W.M., Lambert, K.F., Holsen, T.M., Chen, C.Y., Clair, T.A., Butler, T.J., 2007. Biological mercury hotspots in the Northeastern United States and Southeastern Canada. Bioscience, 57, 1–15.
Fadini P.S., Jardim W.F., 2001. Is the Negro River Basin (Amazon) impacted by naturally occurring mercury? Sci. Total Environ. 275, 71–82.
Faïn, X., Obrist, D., Hallar, A.G., Mccubbin, I., Rahn, T., 2009. High levels of reactive gaseous mercury observed at a high elevation research laboratory in the Rocky Mountains. Atmos. Chem. Phys. 9, 8049–8060.
Finley, B., Swartzendruber, P., Jaffe, D. 2009. Particulate mercury emissions in regional wildfire plumes observed at the Mount Bachelor Observatory. Atmos. Environ. 43, 6074–6083.
Food and agriculture organization, 2018. The state of the world’s forests in 2018-forest pathways to sustainable development. Food and agriculture organization, Rome, p58.
Fostier A.H., Forti M.C., Guimaraes J.R.D., Melfi A.J., Boulet R., Espirito Santo C.M., Krug F.J., 2000. Mercury fluxes in a natural forested Amazonian catchment (Serra do Navio, Amapa State, Brazil). Sci. Total Environ. 260, 201–11.
Friedli, H., Arellano, A., Cinnirella, S., Pirrone, N., 2009. Initial Estimates of Mercury Emissions to the Atmosphere from Global Biomass Burning. Environ. Sci. Technol., 43, 3507–3513.
Friedli, H.R., Radke, L.F., Prescott, R., Li, P., Woo, J.-H., Carmichael, G.R., 2004. Mercury in the atmosphere around Japan, Korea, and China as observed during the 2001 ACE-Asia field campaign: measurements, distributions, sources, and implications. J. Geophys. Res. 109, D19S25.
Fu, X, Heimburger, L.E., Sonke, J.E., 2014. Collection of atmospheric gaseous mercury for stable isotope analysis using iodine- and chlorine-impregnated activated carbon traps. J. Anal. At. Spectrom.29, 841–852.
Fu, X., Feng, X., 2015. Variations of atmospheric total gaseous mercury concentrations for the sampling campaigns of 2001/2002 and 2009/2010 and implications of changes in regional emissions of atmospheric mercury. Bull. Mineral. Petrol. Geochem. 34, 242–249.
Fu, X., Feng, X., Qiu, G., Shang, L., Zhang, H., 2011. Speciated atmospheric mercury and its potential source in Guiyang, China. Atmos. Environ. 45, 4205–4212.
Fu, X., Feng, X., Shang, L.H., Wang, S.F., Zhang, H., 2012. Two years of measurements of atmospheric total gaseous mercury (TGM) at a remote site in Mt. Changbai area, Northeastern China. Atmos. Chem. Phys. 12, 4215–4226.
Fu, X., Marusczak, N., Heimbürger, L.-E., Sauvage, B., Gheusi, F., Prestbo, E.M., Sonke, J.E., 2016a. Atmospheric mercury speciation dynamics at the high-altitude Pic du Midi Observatory, southern France. Atmos. Chem. Phys. 16, 5623–5639.
Fu, X., Yang, X., Lang, X., Zhou, J., Zhang, H., Yu, B., Yan, H., Lin, C.-J., Feng, X., 2016b. Atmospheric wet and litterfall mercury deposition at urban and rural sites in China. Atmos. Chem. Phys. 16, 11547–11562.
Fu, X., Marusczak, N., Wang, X., Gheusi, F., Sonke, J.E., 2016c. Isotopic Composition of Gaseous Elemental Mercury in the Free Troposphere of the Pic du Midi Observatory, France. Environ. Sci. Technol. 50, 5641–5650.
Fu, X., Yang, X., Tan, Q., Ming, L., Lin, T., Lin, C.-J., Li, X., Feng, X., 2018. Isotopic composition of gaseous elemental mercury in the marine boundary layer of East China Sea. J. Geophys. Res. 123, 7656–7669.
Fu, X., Zhang, H., Feng, X., Tan, Q., Ming, L., Liu, C., Zhang, L., 2019. Domestic and transboundary sources of atmospheric particulate bound mercury in remote areas of China: evidence from mercury isotopes. Environ. Sci. Technol. 53, 1947–1957.
Fu, X., Zhang, H., Yu, B., Wang, X., Lin, C.J., Feng, X.B., 2015. Observations of atmospheric mercury in China: a critical review. Atmos. Chem. Phys. 15, 9455–9476.
Garg, S., Chandra, B.P., Sinha, V., Sarda-Esteve, R., Gros, V., Sinha, B., 2016. Limitation of the Use of the Absorption Angstrom Exponent for Source Apportionment of Equivalent Black Carbon: a Case Study from the North West Indo-Gangetic Plain, Environ. Sci. Technol. 50, 814–824.
Genberg, J., Hyder, M., Stenström, K., Bergström, R., Simpson, D., Fors, E.O., Jönsson, J.A., Swietlicki, E., 2011. Source apportionment of carbonaceous aerosol in southern Sweden. Atmos. Chem. Phys. 11, 11387–11400.
Gerson, J.R., Driscoll, C.T., 2016. Is Mercury in a Remote Forested Watershed of the Adirondack Mountains Responding to Recent Decreases in Emissions? Environ. Sci. Technol. 50, 10943–10950.
Ghosh, S., Schauble, E.A., Lacrampe Couloume, G., Blum, J.D., Bergquist, B.A., 2013. Estimation of nuclear volume dependent fractionation of mercury isotopes in equilibrium liquid–vapor evaporation experiments. Chem. Geol. 336, 5–12.
Giang, A., Stokes, L.C., Streets, D.G., Corbitt, E.S., Selin, N.E., 2015. Impacts of the minamata convention on mercury emissions and global deposition from coal-fired power generation in Asia. Environ. Sci. Technol. 49, 5326–5335.
Gilbert, R. O., 1987. Statistical Methods for Environmental Pollution Monitoring. Van Nostrand Reinhold Company, New York. 204–240.
Gratz, L., Keeler, G., Blum, J. D., Sherman, L. S., 2010. Isotopic composition and fractionation of mercury in Great Lakes precipitation and ambient air. Environ. Sci. Technol. 44, 7764–7770.
Gratz, L.E., Keeler, G.J., Miller, E.K., 2009. Long-term relationships between mercury wet deposition and meteorology. Atmos. Environ. 43, 6218–6229.
Gustin, M.S., Amos, H.M., Huang, J., Miller, M.B., Heidecorn, K., 2015. Measuring and modeling mercury in the atmosphere: a critical review. Atmos. Chem. Phys. 15, 5697–5713.
Gustin, M.S., Weiss-Penzias, P.S., Peterson, C., 2012. Investigating sources of gaseous oxidized mercury in dry deposition at three sites across Florida, USA. Atmos. Chem. Phys. 12, 9201–9219.
Han, D.M., Zhang, J.Q., Hu, Z.H., Ma, Y.G., Duan, Y.S., Han, Y., Chen, X.J., Zhou, Y., Cheng, J.P., Wang, W.H., 2018. Particulate mercury in ambient air in Shanghai, China: Size-specific distribution, gas-particle partitioning, and association with carbonaceous composition. Environ. Pollut. 238, 543–553.
Han, J.-S., Seo, Y.-S., Kim, M.-K., Holsen, T.M., Yi, S.-M., 2016. Total atmospheric mercury deposition in forested areas in South Korea. Atmos. Chem. Phys. 16, 7653–7662.
Han, Y.J., Holsen, T.M., Hopke, P.K., 2007. Estimation of source locations of total gaseous mercury measured in New York State using trajectory-based models. Atmos. Environ. 41, 6033–6047.
Hansen, A., Gay, D., 2013. Observations of mercury wet deposition in Mexico, Environ. Sci. Pollut. Res. 20, 8316–8325.
Harari, R., Harari, F., Gerhardsson, L., Lundh, T., Skerfving, S., Broberg, K., 2012. Exposure and toxic effects of elemental mercury in gold-mining activities in Ecuador, Toxicol. Lett. 213, 75–82.
Hedgecock, I.M., Pirrone, N., 2003. Chasing quicksilver: modeling the atmospheric lifetime of Hg0(g) in the marine boundary layer at various latitudes, Environ. Sci. Technol. 38, 69–76.
Herich, H., Hueglin, C., Buchmann, B., 2011. A 2.5 year′s source apportionment study of black carbon from wood burning and fossil fuel combustion at urban and rural sites in Switzerland. Atmos. Meas. Tech. 4, 1409–1420.
Hoffer, A., Gelencsér, A., Guyon, P., Kiss, G., Schmid, O., Frank, G., Artaxo, P., Andreae, M. O., 2006. Optical properties of humic-like substances (HULIS) in biomass-burning aerosols. Atmos. Chem. Phys. 6, 3563–3570.
Holmes, C.D., Krishnamurthy, N.P., Caffrey, J.M., Landing, W.M., Edgerton, E.S., Knapp, K.R., Nair, U.S., 2016. Thunderstorms Increase Mercury Wet Deposition. Environ. Sci. Technol. 50, 9343–9350.
Horowitz, H.M., Jacob, D.J., Zhang, Y., Dibble, T.S., Slemr, F., Amos, H.M., Schmidt, J.A., Corbitt, E.S., Marais, E.A., Sunderland, E.M., 2017. A new mechanism for atmospheric mercury redox chemistry: implications for the global mercury budget. Atmos. Chem. Phys. 17, 6353–6371.
Hsiao, T.C., Chen, W.N., Ye, W.C., Lin, N.H., Tsay, S.C., Lin, T.H., Lee, C.T., Chuang, M.T., Pantina, P., Wang, S.H., 2017. Aerosol optical properties at the Lulin Atmospheric Background Station in Taiwan and the influences of long-range transport of air pollutants. Atmos. Environ. 150, 366–378.
Hsiao, T.-C., Ye, W.-C., Wang, S.-H., Tsay, S.-C., Chen, W.-N., Lin, N.-H., Lee, C.-T., Hung, H.-M., Chuang, M.-T., Chantara, S., 2016. Investigation of the CCN Activity, BC and UVBC mass concentrations of biomass burning aerosols during the 2013 BASELInE campaign. Aerosol Air Qual. Res. 16, 2742–2756.
Hu, S., Fedorov, A.V., 2017. The extreme El Niño of 2015–2016 and the end of global warming hiatus. Geophys. Res. Lett. 44, 3816–3824.
Huang, J., Hopke, P.K., Choi, H.D., Laing, J.R., Cui, H., Zananski, T.J., Chandrasekaran, S.R., Rattigan, O.V., Holsen, T.M., 2011. Mercury (Hg) emissions from domestic biomass combustion for space heating. Chemosphere, 84, 1694–1699.
Huang, J., Kang, S., Wang, S., Wang, L., Zhang, Q., Guo, J., Wang, K., Zhang, G., Tripathee, L., 2013a. Wet deposition of mercury at Lhasa, the capital city of Tibet. Sci. Total Environ. 447, 123–132.
Huang, J.Y., Miller, M.B., Weiss-Penzias, P., Gustin, M.S., 2013b. Comparison of gaseous oxidized Hg measured by KCl-coated denuders, and nylon and cation exchange membranes. Environ. Sci. Technol. 47, 7307–7316.
Huang, J., Kang, S., Zhang, Q., Guo, J., Sillanpää, M., Wang, Y., Sun, S., Sun, X., Tripathee, L., 2015. Characterizations of wet mercury deposition on a remote high-elevation site in the southeastern Tibetan Plateau. Environ. Pollut. 206, 518–526.
Huang, Y., Deng, M., Li, T., Japenga, J., Chen, Q., Yang, X., He, Z., 2017. Anthropogenic mercury emissions from 1980 to 2012 in China. Environ. Pollut. 226, 230–239.
Jaffe, D.A., Lyman, S., Amos, H.M., Gustin, M.S., Huang, J., Selin, N.E., Leonard, L., Ter Schure, A., Mason, R.P., Talbot, R., Rutter, A., Finley, B., Jaeglé, L., Shah, V., McClure, C., Ambrose, J., Gratz, L., Lindberg, S., Weiss-Penzias, P.W., Sheu, G.-R., Feddersen, D., Horvat, M., Dastoor, A., Hynes, A.J., Mao, H., Sonke, J.E., Slemr, F., Fisher, J.A., Ebinghaus, R., Zhang, Y., Edwards, G., 2014. Progress on understanding atmospheric mercury hampered by uncertain measurements. Environ. Sci. Technol. 48, 7204–7206.
Jaffe, D.A., Prestbo, E., Swartzendruber, P., Weiss‐Penzias, P., Kato, P., Takami, A., Hatakeyama, H., Kajii, Y., 2005. Export of atmospheric mercury from Asia. Atmos. Environ. 39, 3029–3038.
Jaffe, D.A., Zhang, L., 2017. Meteorological anomalies lead to elevated O3 in the western U.S. in June 2015. Geophys. Res. Lett. 44, 1990–1997.
Jen, Y.-H., Chen, W.-H., Hung, C.-H., Yuan, C.-S., Ie, I.-R., 2014. Field measurement of total gaseous mercury and its correlation with meteorological parameters and criteria air pollutants at a coastal site of the Penghu Islands. Aerosol Air Qual. Res. 14, 364–375.
Jiskra, M., Sonke, J.E., Obrist, D., Bieser, J., Ebinghaus, R., Myhre, C.L., Pfaffhuber, K.A., Wängberg, I., Kyllönen, K., Worthy, D., Martin, L.G., Labuschagne, C., Mkololo, T., Ramonet, M., Magand, O., Dommergue, A., 2018. A vegetation control on seasonal variations in global atmospheric mercury concentrations. Nat. Geosci. 11, 244–250.
Jiskra, M., Wiederhold, J.G., Bourdon, B., Kretzschmar, R., 2012. Solution speciation controls mercury isotope fractionation of Hg(II) sorption to goethite. Environ. Sci. Technol. 46, 6654–6662.
Jiskra, M., Wiederhold, J.G., Skyllberg, U., Kronberg, R.M., Hajdas, I., Kretzschmar, R., 2015. Mercury deposition and re-emission pathways in boreal forest soils investigated with Hg isotope signatures. Environ. Sci. Technol. 49, 7188−7196.
Jordan, T.B., Seen, A.J., Jacobsen, G.E., 2006. Levoglucosan as an atmospheric tracer for wood smoke. Atmos. Environ. 40, 5316–5321.
Junpen, A., Pansuk, J., Kamnoet, O., Cheewaphongphan, P., Garivait, S., 2018. Emission of air pollutants from rice residue open burning in Thailand, 2018. Atmosphere, 9, 449.
Kaulfus, A.S., Nair, U., Holmes, C.D., Landing, W.M., 2017. Mercury wet scavenging and deposition differences by precipitation type. Environ. Sci. Technol. 51, 2628–2634.
Keeler, G.J., Gratz, L.E., Al-Wali, K., 2005. Long-term atmospheric mercury wet deposition at Underhill, Vermont. Ecotoxicology, 14, 71–83.
Kim, K.H., Brown, R.J.C., Kwon, E., Kim, I.S., Sohn, J.R., 2016. Atmospheric mercury at an urban station in Korea across three decades. Atmos. Environ. 131, 124–132.
Kirchstetter, T.W., Novakov, T., Hobbs, P.V., 2004. Evidence that the spectral dependence of light absorption by aerosols is affected by organic carbon. J. Geophys. Res. 109, D21208.
Krnavek, L., Landis, M.S., Colton, A., Kuniyuki, D., 2010. A study of ambient mercury in the marine free troposphere, Annual Global Monitoring Conference, Boulder, CO, May 18–19. Available for download at. https://www.esrl.noaa.gov/gmd/publications/annual_meetings/2010/abstracts/pg_0028.pdf.
Laacouri, A., Nater, E.A., Kolka, R.K., 2013. Distribution and Uptake Dynamics of Mercury in Leaves of Common Deciduous Tree Species in Minnesota, USA. Environ. Sci. Technol. 47, 10462−10470.
Laing, J.R., Jaffe, D.A., Hee, J.R., 2016. Physical and optical properties of aged biomass burning aerosol from wildfires in Siberia and the Western USA at the Mt. Bachelor Observatory. Atmos. Chem. Phys. 16, 15185–15197.
Landis, M.S., Keeler, G.J., 1997. Critical evaluation of a modified automatic wet-only precipitation collector for mercury and trace element determination. Environ. Sci. Technol. 31, 2610–2615.
Landis, M.S., Stevens, R.K., Schaedlich, F., Prestbo, E.M., 2002. Development and characterization of an annular denuder methodology for the measurement of divalent inorganic reactive gaseous mercury in ambient air. Environ. Sci. Technol. 36, 3000–3009.
Laurier, F.J.G., Mason, R.P., Whalin, L., Kato, S., 2003. Reactive gaseous mercury formation in the North Pacific Ocean’s marine boundary layer: A potential role of halogen chemistry. J. Geophys. Res. 108, D174529.
Lee, C.T., Chuang, M.T., Lin, N.H., Wang, J.L., Sheu, G.R., Wang, S.H., Huang, H., Chen, H.W., Weng, G.H., Hsu, S.P., 2011. The enhancement of biosmoke from Southeast Asia on PM2.5 water-soluble ions during the transport over the Mountain Lulin site in Taiwan. Atmos. Environ. 45, 5784–5794.
Lee, C.T., Ram, S.S., Nguyen, D.L., Chou, C.C.K., Chang, S.Y., Lin, N.H., Chang, S.C., Hsiao, T.C., Sheu, G.R., Ou-Yang, C.F., Chi, K.H., Wang, S.H., Wu, X.C., 2016. Aerosol chemical profile of near-source biomass burning smoke in Sonla, Vietnam during 7- SEAS campaigns in 2012 and 2013. Aerosol Air Qual. Res. 16, 2603–2617.
Li, J., Liu, C., Yin, Y., Kumar, K. R., 2016. Numerical investigation on the Ångström Exponent of black carbon aerosols, J. Geophys. Res. 121, 3506–3518.
Li, W., Gou, W., Li, W., Zhang, T., Yu, B., Liu, Q., Shi, J., 2019. Environmental applications of metal stable isotopes: Silver, mercury and zinc. Environ. Pollut. 252, 1344–1356.
Lin, C.J., Pan, L., Streets, D.G., Shetty, S.K., Jang, C., Feng, X., Chu, H.W., Ho, T.C., 2010. Estimating mercury emission outflow from East Asia using CMAQ-Hg. Atmos. Chem. Phys. 10, 1853–1864.
Lin, N.-H., Lee, H.-H., Chang, M.-B., 1999. Evaluation of the characteristics of acid precipitation in Taipei, Taiwan using cluster analysis. Water Air and Soil Pollut. 113, 241–260.
Lin, N.-H., Tsay, S.-C., Maring, H.B., Yen, M.-C., Sheu, G.-R., Wang, S.-H., Chi, K.-H., Chuang, M.-T., Ou-Yang, C.-F., Fu, J.S., Reid, J.S., Lee, C.-T., Wang, L.-C., Wang, J.-L., Hsu, C.N., Sayer, A.M., Holben, B.N., Chun, Y.C., Anh, N.X., Sopajaree, K., Chen, S.J., Cheng, M.T., Tsuang, B.J., Tsai, C.J., Peng, C.M., Schnell, R.C., Conway, T.J., Chang, C.T., Lin, K.S., Tsai, Y.I., Lee, W.J., Chang, S.C., Liu, J.J., Chiang, W.L., 2013. An overview of regional experiments on biomass burning aerosols and related pollutants in Southeast Asia: from BASE-ASIA and the Dongsha Experiment to 7-SEAS. Atmos. Environ. 78, 1–19.
Lindberg, S., Bullock, R., Ebinghaus, R., Engstrom, D., Feng, X., Fitzgerald, W., Pirrone, N., Prestbo, E., Seigneur, C., 2007. A synthesis of progress and uncertainties in attributing the sources of mercury in deposition. AMBIO. J. Human Environ. 36, 19–33.
Liu, C., Chung, C.E., Yin, Y., Schnaiter, M., 2018. The absorption Ångström exponent of black carbon: from numerical aspects. Atmos. Chem. Phys. 18, 6259–6273.
Luo, J., She, J., Yang, P.J., Sun, S. Q., Li, W., Gong, Y.W., Tang, R.G., 2014. Heavy metal concentrations in timberline trees of eastern Tibetan Plateau. Ecotoxicology, 23, 1086–1098.
Lyman, S.N., Gustin, M.S., Prestbo, E.M., Marsiks, F.J., 2007. Estimation of dry deposition of atmospheric mercury in Nevada by direct and indirect methods. Environ. Sci. Technol. 41, 1970–1976.
Lyman, S.N., Jaffe, D.A., 2012. Formation and fate of oxidized mercury in the upper troposphere and lower stratosphere, Nat. Geosci. 5, 114–117.
Mao, H., Cheng, I., Zhang, L., 2016. Current understanding of the driving mechanisms for spatiotemporal variations of atmospheric speciated mercury: a review. Atmos. Chem. Phys. 16, 12897–12924.
Mao, H., Hall, D., Ye, Z., Zhou, Y., Felton, D., Zhang, L., 2017a. Impacts of large-scale circulation on urban ambient concentrations of gaseous elemental mercury in New York, USA. Atmos. Chem. Phys. 17, 11655–11671.
Mao, H., Ye, Z., Driscoll, C., 2017b. Meteorological effects on Hg wet deposition in a forested site in the Adirondack region of New York during 2000–2015. Atmos. Environ. 168, 90–100.
Martin, L.G., Labuschagne, C., Brunke, E.G., Weigelt, A., Ebinghaus, R., Slemr, F., 2017. Trend of atmospheric mercury concentrations at Cape Point for 1995–2004 and since 2007. Atmos. Chem. Phys. 17, 2393–2399.
Martinsson, J., Azeem, H.A., Sporre, M.K., Bergström, R., Ahlberg, E., Öström, E., Kristensson, A., Swietlicki, E., Eriksson Stenström, K., 2017. Carbonaceous aerosol source apportionment using the Aethalometer model-evaluation by radiocarbon and levoglucosan analysis at a rural background site in southern Sweden. Atmos. Chem. Phys. 17, 4265–4281.
Martinsson, J., Eriksson, A. C., Nielsen, I. E., Malmborg, V. B., Ahlberg, E., Andersen, C., Lindgren, R., Nyström, R., Nordin, E. Z., Brune, W. H., Svenningsson, B., Swietlicki, E., Boman, C., Pagels, J. H., 2015. Impacts of Combustion Conditions and Photochemical Processing on the Light Absorption of Biomass Combustion Aerosol, Environ. Sci. Technol. 49, 14663–14671.
Mason, R.P., 2013. Trace metals in aquatic systems. Trace Met. Aquat. Syst. 1–431.
Mason, R.P., Abbott, M.L., Bodaly, R.A., Bullock Jr.O.R., Driscoll, C.T., Evers, D., Lindberg, S.E., Murray, M., Swain, E.B., 2005. Monitoring the response to changing mercury deposition. Environ. Sci. Technol., 15A–22A.
Mason, R.P., Sheu, G.-R., 2002. Role of the ocean in the global mercury cycle. Glob. Biogeochem. Cycles, 16, 1093.
Nair, U.S., Wu, Y., Holmes, C.D., Ter Schure, A., Kallos, G., Walters, J.T., 2013. Cloud-resolving simulations of mercury scavenging and deposition in thunderstorms, Atmos. Chem. Phys. 13, 10143–10157.
Nguyen, D.L., Kim, J.Y., Shim, S.G., Ghim, Y.S., Zhang, X.S., 2016. Shipboard and ground measurements of atmospheric particulate mercury and total mercury in precipitation over the Yellow Sea region. Environ. Pollut. 219, 262–274.
Nguyen, H.T., Kim, M.-Y., Kim, K.-H., 2010. The influence of long-range transport on atmospheric mercury on Jeju Island, Korea. Sci. Total Environ. 408, 1295–1307.
Nguyen, L.S.P., Sheu, G.-R, Lin, D.-W., Lin, N.-H., 2019a. Temporal changes in atmospheric mercury concentrations at a background mountain site downwind of the East Asia continent in 2006–2016. Sci. Total Environ. 686, 1049–1056.
Nguyen, L.S.P., Sheu, G.R., 2019. Four-year Measurements of Wet Mercury Deposition at a Tropical Mountain Site in Central Taiwan. Aerosol Air Qual. Res. 19, 2043–2055.
Nguyen, L.S.P., Zhang, L., Lin, D.-W., Lin, N.-H., Sheu, G.-R., 2019b. Eight-year dry deposition of atmospheric mercury to a tropical high mountain background site downwind of the East Asian continent. Environt. Pollut. 225, 113128.
Obrist, D., 2007. Atmospheric mercury pollution due to losses of terrestrial carbon pools? Biogeochemistry, 85, 119–123.
Obrist, D., Agnan, Y., Jiskra, M., Olson, C.L., Colegrove, D.P., Hueber, J., 2017. Tundra uptake of atmospheric elemental mercury drives Arctic mercury pollution. Nature, 547, 201–204.
Obrist, D., Johnson, D.W., Lindberg, S.E., Luo, Y., Hararuk, O., Bracho, R., Battles, J.J., Dail, D.B., 2011. Mercury distribution across 14 U.S. Forests. Part I: Spatial patterns of concentrations in biomass, litter, and soils. Environ. Sci. Technol. 45, 3974–3981.
Obrist, D., Kirk, J.L., Zhang, L., Sunderland, E.M., Jiskra, M., Selin, N.E., 2018. A review of global environmental mercury processes in response to human and natural perturbations: Changes of emissions, climate, and land use. Ambio, 47, 116−140.
Olson, C., Jiskra, M., Biester, H., Chow, J., Obrist, D., 2018. Mercury in active-layer tundra soils of Alaska: concentrations, pools, origins, and spatial distribution. Glob. Biogeochem. Cycles, 32, 1058–1073.
Olson, M.R., Garcia, M.V., Robinson, M.A., Van Rooy, P., Dietenberger, M.A., Bergin, M., Schauer, J.J., 2015. Investigation of black and brown carbon multiple-wavelength dependent light absorption from biomass and fossil fuel combustion source emissions. J. Geophys. Res. Atmos. 120, JD022970.
Outridge, P., Mason, R., Wang, F., Guerrero, S., Heimbürger-Boavida, L.-E., 2018. Updated global and oceanic mercury budgets for the United Nations Global Mercury Assessment 2018. Environ. Sci. Technol. 52, 11466–11477.
Ou-Yang, C.F., Lin, N.H., Lin, C.C., Wang, S.H., Sheu, G.R., Lee, C.T., Schnell, R.C., Lang, P.M., Kawasato, T., Wang, J.L., 2014. Characteristics of atmospheric carbon monoxide at a high-mountain background station in East Asia. Atmos. Environ. 89, 613–622.
Pacyna, E.G., Pacyna, J.M., Steenhuisen, F., Wilsom, S., 2006. Global anthropogenic mercury emission inventory for 2000. Atmos. Environ. 40, 4048–4063.
Pani, S.K., Chantara, S., Khamkaew, C., Lee, C.T., Lin, N.H., 2019. Biomass burning in the northern peninsular Southeast Asia: aerosol chemical profile and potential exposure. Atmos. Res. 224, 180–195.
Pani, S.K., Lee, C.T., Chou, C.C.K., Shimada, K., Hatakeyama, S., Takami, A., Wang, S.H., Lin, N.H., 2017. Chemical characterization of wintertime aerosols over islands and mountains in East Asia: impacts of the continental Asian outflow. Aerosol Air Qual. Res. 17, 3006–3036.
Pani, S.K., Lin, N.H., Chantara, S., Wang, S.H., Khamkaew, C., Prapamontol, T., Janjai, S., 2018. Radiative response of biomass-burning aerosols over an urban atmosphere in northern peninsular Southeast Asia. Sci. Total Environ. 633, 892–911.
Pani, S.K., Wang, S.H., Lin, N.H., Tsay, S.C., Lolli, S., Chuang, M.T., Lee, C.T., Chantara, S., Yu, J.Y., 2016a. Assessment of aerosol optical property and radiative effect for the layer decoupling cases over the Northern South China Sea during the 7-SEAS/Dongsha Experiment. J. Geophys. Res. Atmos. 121, 4894–4906.
Pani, S.K., Wang, S.H., Lin, N.H., Lee, C.T., Tsay, S.C., Holben, B.N., Janjai, S., Hsiao, T.C., Chuang, M.T., Chantara, S., 2016b. Radiative effect of springtime biomass-burning aerosols over northern Indochina during 7-SEAS/BASELInE 2013 campaign. Aerosol Air Qual. Res. 16, 2802–2817.
Prestbo, E.M., Gay, D.A., 2009. Wet deposition of mercury in the U.S. and Canada, 1996–2005: Results and analysis of the NADP mercury deposition network (MDN). Atmos. Environ. 43, 4223–4233.
Poissant, L., Pilote, M., Yumvihoze, E., Lean, D., 2008. Mercury concentrations and foliage/atmosphere fluxes in a maple forest ecosystem in Quebec, Canada. J. Geophys. Res. Atmos. 113, D10307.
Ren, X., Luke, W.T., Kelley, P., Cohen, M.D., Artz, R., Olson, M.L., Schmeltz, D., Puchalski, M., Goldberg, D.L., Ring, A., Mazzuca, G.M., Cummings, K.A., Wojdan, L., Preaux, S., Stehr, J.W., 2016. Atmospheric mercury measurements at a suburban site in the MidAtlantic United States: Inter-annual, seasonal and diurnal variations and source-receptor relationships. Atmos. Environ. 146, 141−152.
Reid, J.S., Eck, T.F., Christopher, S.A., Koppmann, R., Dubovik, O., Eleuterio, D.P., Holben, B.N., Reid, E.A., Zhang, J., 2005. A review of biomass burning emissions part III: intensive optical properties of biomass burning particles. Atmos. Chem. Phys. 5, 827–849.
Risch, M.R., De Wild, J.F., Gay, D.A., Zhang, L., Boyer, E.W., Krabbenhoft, D.P., 2017. Atmospheric mercury deposition to forests in the eastern USA. Environ. Pollut. 228, 8−18.
Risch, M.R., DeWild, J.F., Krabbenhoft, D.P., Kolka, R.K., Zhang, L., 2012a. Litterfall mercury dry deposition in the eastern USA. Environ. Pollut. 161, 284–290.
Risch, M.R., Gay, D.A., Fowler, K.K., Keeler, G.J., Backus, S.M., Blanchard, P., Barres, J.A., Dvonch, J.T., 2012b. Spatial pattern and temporal trends in mercury concentrations, precipitation depths, and mercury wet deposition in the North American Great Lakes Region, 2002-2008. Environ. Pollut. 161, 267–271.
Rolison, J., Landing, W., Luke, W., Cohen, M., Salters, V., 2013. Isotopic composition of species-specific atmospheric Hg in a coastal environment. Chem. Geol. 336, 37–49.
Russell, L.M., Hawkins, L.N., Frossard, A.A., Quinn, P.K., Bates, T.S., 2010. Carbohydrate-like composition of submicron atmospheric particles and their production from ocean bubble bursting. P. Natl. Acad. Sci. 107, 6652–6657.
Rutter, A. P., Schauer, J.J., Shafer, M.M., Creswell, J., Olson, M.R., Clary, A., Robinson, M., Parman, A.M., and Katzman, T.L., 2011. Climate sensitivity of gaseous elemental mercury dry deposition to plants: Impacts of temperature, light intensity, and plant species, Environ. Sci. Technol. 45, 569–575.
Sakata, M., Marumoto, K., 2005. Wet and dry deposition fluxes of mercury in Japan. Atmos. Environ. 39, 3139–3146.
Sandradewi, J., Prevot, A.S.H., Szidat, S., Perron, N., Alfarra, M.R., Lanz, V.A., Weingartner, E., Baltensperger, U., 2008. Using aerosol light absorption measurements for the quantitative determination of wood burning and traffic emission contributions to particulate matter. Environ. Sci. Technol. 42, 3316–3323.
Scarnato, B.V., Vahidinia, S., Richard, D.T., Kirchstetter, T.W., 2013. Effects of internal mixing and aggregate morphology on optical properties of black carbon using a discrete dipole approximation model. Atmos. Chem. Phys. 13, 5089–5101.
Schauble, E.A., 2007. Role of nuclear volume in driving equilibrium stable isotope fractionation of mercury, thallium, and other very heavy elements. Geochim. Cosmochim. Acta, 71, 2170–2189.
Schroeder W.H., Munthe J., 1998. Atmospheric mercury – an overview. Atmos.
Environ. 32, 809–822.
Schroeder, W.H., Anlauf, K.G., Barrie, L.A., Lu, J.Y., Steffen, A., Schneeberger, D.R., Berg, T. 1988. Arctic springtime depletion of mercury. Nature, 394, 331–332.
Selin, N.E., 2009. Global biogeochemical cycling of mercury: A review, Annu. Rev. Env. Resour. 34, 43–63.
Selin, N.E., Jacob, D.J., 2008. Seasonal and spatial patterns of mercury wet deposition in the United States: Constraints on the contribution from North American anthropogenic sources. Atmos. Environ. 42, 5193–5204.
Selin, N.E., Jacob, D.J., Park, R.J., Yantosca, R.M., Strode, S., Jaeglé, L., Jaffe, D., 2007. Chemical cycling and deposition of atmospheric mercury: global constraints from observations. J. Geophys. Res. 112, D02308.
Seo, Y.-S., Han, Y.-J., Choi, H.-D., Holsen, T.M., Yi, S.-M., 2012. Characteristics of total mercury (TM) wet deposition: scavenging of atmospheric mercury species. Atmos. Environ. 49, 69–76.
Shah, V., Jaeglé, L., 2017. Subtropical subsidence and surface deposition of oxidized mercury produced in the free troposphere. Atmos. Chem. Phys. 17, 8999–9017.
Shah, V., Jaeglé, L., Gratz, L.E., Ambrose, J.L., Jaffe, D.A., Selin, N.E., Song, S., Campos, T.L., Flocke, F.M., Reeves, M., Stechman, D., Stell, M., Festa, J., Stutz, J., Weinheimer, A.J., Knapp, D.J., Montzka, D.D., Tyndall, G.S., Apel, E.C., Hornbrook, R.S., Hills, A.J., Riemer, D.D., Blake, N.J., Cantrell, C.A., Mauldin III, R.L., 2016. Origin of oxidized mercury in the summertime free troposphere over the southeastern US. Atmos. Chem. Phys. 16, 1511–1530.
Shanley, J.B., Engle, M.A., Scholl, M., Krabbenhoft, D.P., Brunette, R., Olson, M.L., Conroy, M.E., 2015. High Mercury Wet Deposition at a “Clean Air” Site in Puerto Rico. Environ. Sci. Technol. 49, 12474–12482.
Sherman, L.S., Blum, J.D., Dvonch, J.T., Gratz, L.E., Landis, M.S., 2015. The use of Pb, Sr, and Hg isotopes in Great Lakes precipitation as a tool for pollution source attribution. Sci. Total Environ. 502, 362–374.
Sherman, L.S., Blum, J.D., Johnson, K.P., Keeler, G.J., Barres, J.A., Douglas, T.A., 2010. Mass-independent fractionation of mercury isotopes in Arctic snow driven by sunlight. Nat. Geosci. 3, 173–177.
Sheu, G.-R., Lin, N.-H., 2011. Mercury in cloud water collected on Mt. Bamboo in northern Taiwan during the northeast monsoon season. Atmos. Environ. 45, 4454–4462.
Sheu, G.-R., Lin, N.-H., 2013. Characterizations of wet mercury deposition to a remote islet (Pengjiayu) in the subtropical Northwest Pacific Ocean. Atmos. Environ. 77, 474–481.
Sheu, G.-R., Lin, N.H., Lee, C.T., Wang, J.L., Chuang, M.T., Wang, S.H., Chi, K.H., Ou-Yang, C.F., 2013. Distribution of atmospheric mercury in northern Southeast Asia and South China Sea during Dongsha Experiment. Atmos. Environ. 78, 174–183.
Sheu, G.-R., Lin, N.-H., Wang, J.-L., Lee, C.-T., Ou Yang, C.-F., Wang, S.-H., 2010. Temporal distribution and potential sources of atmospheric mercury measured at a high-elevation background station in Taiwan. Atmos. Environ. 44, 2393–2400.
Sheu, G.-R., Nguyen, L.S.P., Truong, M.T., Lin, D.-W., 2019. Characteristics of atmospheric mercury at a suburban site in northern Taiwan and influence of trans-boundary haze events. Atmos. Environ. 214, 116827.
Shi, Y., Zhao, A., Matsunaga, T., Yamaguchi, Y., Zang, S., Li, Z., Yu, T., Gu, X., 2019. High resolution inventory of mercury emissions from biomass burning in tropical continents during 2001–2017. Sci. Total Environ. 653, 638–648.
Sillman, S., Marsik, F.J., Al-Wali, K.I., Keeler, G.J., Landis, M.S., 2007. Reactive mercury in the troposphere: model formation and results for Florida, the northeastern US and the Atlantic Ocean. J. Geophys. Res. 112, D23305.
Slemr, F., Angot, H., Dommergue, A., Magand, O., Barret, M., Weigelt, A., Ebinghaus, R., Brunke, E.G., Pfaffhuber, K.A., Edwards, G., Howard, D., Powell, J., Keywood, M., Wang, F., 2015. Comparison of mercury concentrations measured at several sites in the Southern Hemisphere. Atmos. Chem. Phys. 15, 3125–3133.
Slemr, F., Brenninkmeijer, C.A.M., Rauthe-Schöch, A., Weigelt, A., Ebinghaus, R., Brunke, E.-G., Martin, L., Spain, T.G., O′Doherty, S., 2016. El Niño–Southern Oscillation influence on tropospheric mercury concentrations. Geophys. Res. Lett. 43, 1766–1771.
Slemr, F., Brunke, E.-G., Ebinghaus, R., Kuss, J., 2011. Worldwide trend of atmospheric mercury since 1995. Atmos. Chem. Phys. 11, 4779–4787.
Slemr, F., Brunke, E.-G., Ebinghaus, R., Temme, C., Munthe, J., Wängberg, I., Schroeder, W., Steffen, A., Berg, T., 2003. Worldwide trend of atmospheric mercury since 1977. Geophys. Res. Lett. 30, 1516.
Sommar, J., Zhu, W., Shang, L., Lin, C.J., Feng, X., 2016. Seasonal variations in metallic mercury (Hg0) vapor exchange over biannual wheat-corn rotation cropland in the North China Plain. Biogeosciences, 13, 2029–2049.
Sprovieri, F., Pirrone, N., Bencardino, M., D’Amore, F., Angot, H., Barbante, C., Brunke, E.-G., Arcega-Cabrera, F., Cairns, W., Comero, S., Diéguez, M.D.C., Dommergue, A., Ebinghaus, R., Feng, X.B., Fu, X., Garcia, P.E., Gawlik, B.M., Hageström, U., Hansson, K., Horvat, M., Kotnik, J., Labuschagne, C., Magand, O., Martin, L., Mashyanov, N., Mkololo, T., Munthe, J., Obolkin, V., Ramirez Islas, M., Sena, F., Somerset, V., Spandow, P., Vardè, M., Walters, C., Wängberg, I., Weigelt, A., Yang, X., Zhang, H., 2017. Five-year records of mercury wet deposition flux at GMOS sites in the Northern and Southern hemispheres. Atmos. Chem. Phys. 17, 2689–2708.
Sprovieri, F., Pirrone, N., Bencardino, M., D′Amore, F., Carbone, F., Cinnirella, S., Mannarino, V., Landis, M., Ebinghaus, R., Weigelt, A., Brunke, E.-G., Labuschagne, C., Martin, L., Munthe, J., Wängberg, I., Artaxo, P., Morais, F., Barbosa, H.D.M.J., Brito, J., Cairns, W., Barbante, C., Diéguez, M.D.C., Garcia, P.E., Dommergue, A., Angot, H., Magand, O., Skov, H., Horvat, M., Kotnik, J., Read, K.A., Neves, L.M., Gawlik, B.M., Sena, F., Mashyanov, N., Obolkin, V., Wip, D., Feng, X.B., Zhang, H., Fu, X., Ramachandran, R., Cossa, D., Knoery, J., Marusczak, N., Nerentorp, M., Norstrom, C., 2016. Atmospheric mercury concentrations observed at ground-based monitoring sites globally distributed in the framework of the GMOS network. Atmos. Chem. Phys. 16, 11915–11935.
Stamenkovic, J., Gustin, M.S., 2009. Nonstomatal versus stomatal uptake of atmospheric mercury. Environ. Sci. Technol. 43, 1367−1372.
Steffen, A., Scherz, T., Olson, M., Gay, D., Blanchard, P., 2012. A comparison of data quality control protocols for atmospheric mercury speciation measurements. J. Environ. Monit. 14, 752–765.
Stohl, A., 1998. Computation, accuracy and applications of trajectories - a review and bibliography. Atmos. Environ. 32, 947–966.
Streets, D.G., Devane, M.K., Lu, Z., Bond, T.C., Sunderland, E.M., Jacob, D.J., 2011. All-time releases of mercury to the atmosphere from human activities. Environ. Sci. Technol. 45, 10485–10491.
Streets, D.G., Horowitz, H.M., Lu, Z., Levin, L., Thackray, C.P., Sunderland, E.M., 2019. Global and regional trends in mercury emissions and concentrations, 2010–2015. Atmos. Environ. 201, 417–427.
Strode, S.A., Jaeglé, L., Jaffe, D.A., Swartzendruber, P.C., Selin, N.E., Holmes, C., Yantosca, R.M., 2008. Trans-Pacific transport of mercury. J. Geophys. Res. 113, D15305.
Styszko, K., Szramowiat, K., Kistler, M., Kasper-Giebl, A., Samek, L., Furman, L., Pacyna, J., Gołaś, J., 2015. Mercury in atmospheric aerosols: preliminary case study for the city of Krakow, Poland. Comptes Rendus Chim. 18, 1183–1191.
Sun, G., Sommar, J., Feng, X., Lin, C., Ge, M., Wang, W., Yin, R., Fu, X., Shang, L., 2016a. Mass-dependent and –independent fractionation of mercury isotope during gas-phase oxidation of elemental mercury vapor by atomic Cl and Br. Environ. Sci. Technol. 50, 9232–9241.
Sun, R., Streets, D.G., Horowitz, H.M., Amos, H.M., Liu, G., Perrot, V., Toutain, J.P., Hintelmann, H., Sunderland, E.M., Sonke, J.E., 2016b. Historical (1850–2010) mercury stable isotope inventory from anthropogenic sources to the atmosphere. Elementa, 4, 1–15.
Sun, R., Heimbürger, L.-E., Sonke, J.E., Liu, G., Amouroux, D., Berail, S., 2013. Mercury stable isotope fractionation in six utility boilers of two large coal-fired power plants. Chem. Geol. 336, 103–111.
Sun, R., Sonke, J.E., Heimburger, L.E., Belkin, H.E., Liu, G.J., Shome, D., Cukrowska, E., Liousse, C., Pokrovsky, O.S., Streets, D.G., 2014. Mercury stable isotope signatures of world coal deposits and historical coal combustion emissions. Environ. Sci. Technol. 48, 7660–7668.
Sunderland, E.M., 2007. Mercury exposure from domestic and imported estuarine and marine fish in the U.S. seafood market. Environ. Health Perspect. 115, 235–242.
Swartzendruber, P.C., Jaffe, D.A., Prestbo, E.M., Weiss-Penzias, P.S., Selin, N.E., Park, R., Jacob, D.J., Strode, S., Jaeglé, L., 2006. Observations of reactive gaseous mercury in the free troposphere at the Mount Bachelor Observatory. J. Geophys. Res. 111, D24301.
Talbot, R., Mao, H., Scheuer, E., Dibb, J., Avery, M., 2007. Total depletion of Hg0 in the upper troposphere-lower stratosphere. Geophys. Res. Lett. 34, L23804.
Tang, Y., Wang, S., Wu, Q., Liu, K., Wang, L., Li, S., Gao, W., Zhang, L., Zheng, H., Li, Z., Hao, J., 2018. Recent decrease trend of atmospheric mercury concentrations in East China: the influence of anthropogenic emissions. Atmos. Chem. Phys. 18, 8279–8291.
Timonen, H., Ambrose, J.L., Jaffe, D.A., 2013. Oxidation of elemental Hg in anthropogenic and marine air masses, Atmos. Chem. Phys. 13, 2827–2836.
Tong, Y., Yin, X., Lin, H., Danzeng, Buduo, Wang, H., Deng, C., Chen, L., Li, J., Zhang, W., Schauer, J.J., Kang, S., Zhang, G., Bu, X., Wang, X., Zhang, Q., 2016. Recent decline of atmospheric mercury recorded by androsace tapete on the Tibetan Plateau. Environ. Sci. Technol. 50, 13224–13231.
Travnikov, O., Dastoor, A., Friedman, C., Ryzhkov, A., Selin, N., Song, S., 2015. AMAP/UNEP, 2015. Global Mercury Modelling: Update of Modelling Results in the Global Mercury Assessment 2013. Arctic Monitoring and Assessment Programme, Oslo, Norway/UNEP Chemicals Branch, Geneva, Switzerland.
Travnikov, O., Lin, C.-J., Dastoor, A., Bullock, O.R., Hedgecock, I.M., Holmes, C., Ilyin, I., Jaegle, L., Jung, G.J., Pan, L., Pong-prueksa, P., Ryzhkov, A., Seigneur, C., Skov, H., 2010. Global and regional modelling. In: Pirrone, N., Keating, T. (Eds.), Hemispheric Transport of Air Pollution 2010 Part B: Mercury Air Pollution Studies No. 18. United Nations Publications, New York, USA, and Geneva, Switzerland, 101–148.
Tripathee, L., Guo, J., Kang, S., Paudyal, R., Huang, J., Sharma, C.M., Zhang, Q., Chen, P., Ghimire, P.S., Sigdel, M., 2019. Spatial and temporal distribution of total mercury in atmospheric wet precipitation at four sites from the Nepal-Himalayas. Sci. Total Environ. 655, 1207–1217.
Tsay, S.C., Maring, H.B., Lin, N.H., Buntoung, S., Chantara, S., Chuang, H.C., Gabriel, P.M., Goodloe, C.S., Holben, B.N., Hsiao, T.C., Hsu, N.C., Janjai, S., Lau, W.K.M., Lee, C.T., Lee, J., Loftus, A.M., Nguyen, A.X., Nguyen, C.M., Pani, S.K., Pantina, P., Sayer, A.M., Tao, W.K., Wang, S.H., Welton, E.J., Wiriya, W., Yen, M.C., 2016. Satellitesurface perspectives of air quality and aerosol-cloud effects on the environment: an overview of 7-SEAS/BASELInE. Aerosol Air Qual. Res. 16, 2581–2602.
UN Environment., 2019. Global Mercury Assessment 2018. UN Environment Programme, Chemicals and Health Branch Geneva, Switzerland.
UNEP, 2013. Global Mercury Assessment 2013: Sources, Emissions, Releases and Environmental Transport. UNEP Chemicals Branch, Geneva, Switzerland.
USEPA, 2002. Revision E, Mercury in water by Oxidation, Purge and Trap, and Cold Vapor atomic Fluorescence Spectrometry, Tech. rep., United States Environmental Protection Agency, Washington DC.
Vermette, S., Lindberg, S., Bloom, N., 1995. Field tests for a regional mercury deposition network-sampling design and preliminary test results. Atmos. Environ. 29, 1247–1251.
Wang, Y.Q., Zhang, X.Y., Draxler, R.R., 2009. TrajStat: GIS-based software that uses various trajectory statistical analysis methods to identify potential sources from long-term air pollution measurement data. Environ Modell Softw. 24, 938–939.
Wang, X., Bao, Z., Lin, C.J., Yuan, W., Feng, X., 2016a. Assessment of global mercury deposition through litterfall. Environ. Sci. Technol. 50, 8548–8557.
Wang, X., Lin, C.-J., Lu, Z., Zhang, H., Zhang, Y., Feng, X., 2016b. Enhanced accumulation and storage of mercury on subtropical evergreen forest floor: Implications on mercury budget in global forest ecosystems. J. Geophys. Res. 121, 2096–2109.
Wang, X., Luo, J., Yin, R., Yuan, W., Lin, C.-J., Sommar, J., Feng, X., Wang, H., Lin, C., 2017. Using mercury isotopes to understand mercury accumulation in the montane forest floor of the eastern Tibetan Plateau. Environ. Sci. Technol. 51, 801–809.
Wang, X., Yuan, W., Lin, C.J., Zhang, L., Zhang, H., Feng, X., 2019. Climate and vegetation as primary drivers for global mercury storage in surface soil. Environ. Sci. Technol. 53, 10665–10675.
Wang, Y., Hopke, P.K., Rattigan, O.V., Xia, X., Chalupa, D.C., Utell, M.J., 2011. Characterization of residential wood combustion particles using the two-wavelength aethalometer. Environ. Sci. Technol. 45, 7387–7393.
Wang, Y., Huang, J., Zananski, T. J., Hopke, P. K., Holsen, T. M., 2010. Impacts of the Canadian forest fires on atmospheric mercury and carbonaceous particles in northern New York. Environ. Sci. Technol. 44, 8435–8440.
Wang, Y.M., Wang, D.Y., Meng, B., Peng, Y.L., Zhao, L., Zhu, J.S., 2012. Spatial and temporal distributions of total and methyl mercury in precipitation in core urban areas, Chongqing, China. Atmos. Chem. Phys. 12, 9417–9426.
Wang, X., Lin, C.J., Feng, X., Yuan, W., Fu, X., Zhang, H., Wu, Q., Wang, S., 2018. Assessment of regional mercury deposition and emission outflow in Mainland China. J. Geophys. Res. 123, 9868–9890.
Watson, J.G., Chow, J.C., Chen, L.W.A., 2005. Summary of organic and elemental carbon/black carbon analysis methods and intercomparisons. Aerosol Air Qual. Res. 5, 65–102.
Weigelt, A., Ebinghaus, R., Manning, A.J., Derwent, R.G., Simmonds, P.G., Spain, T.G., Jennings, S.G., Slemr, F., 2015. Analysis and interpretation of 18 years of mercury observations since 1996 at Mace Head, Ireland. Atmos. Environ. 100, 85–93.
Weiss-Penzias, P.S., Gay, D.A., Brigham, M.E., Parsons, M.T., Gustin, M.S., Schure, A.T., 2016. Trends in mercury wet deposition and mercury air concentrations across the U.S. and Canada. Sci. Total Environ. 568, 546–556.
Weiss-Penzias, P.S., Gustin, M.S., Lyman, S.N., 2011. Sources of gaseous oxidized mercury and mercury dry deposition at two southeastern U.S. sites. Atmos. Environ. 45, 4569–4579.
Wright L.P., Zhang L., Cheng I., Aherne J., Wentworth G.R., 2018. Impacts and effects indicators of atmospheric deposition of major pollutants to various ecosystems – a review. Aerosol Air Qual. Res. 18, 1953–1992.
Wright, L.P., Zhang, L., 2015. An approach estimating bi-directional air-surface exchange for gaseous elemental mercury at AMNet sites. J. Adv. Model. Earth Syst. 7, 35−49.
Wright, L.P., Zhang, L., Marsik, F.J., 2016. Overview of mercury dry deposition, litterfall, and throughfall studies. Atmos. Chem. Phys. 16, 13399–13416.
Wu, Q., Li, G., Wang, S., Liu, K., Hao, J., 2018. Mitigation Options of Atmospheric Hg Emissions in China. Environ. Sci. Technol. 52, 12368−12375.
Wu, Q., Wang, S., Li, G., Liang, S., Lin, C.J., Wang, Y., Cai, S., Liu, K., Hao, J., 2016. Temporal trend and spatial distribution of speciated atmospheric mercury emissions in China during 1978–2014. Environ. Sci. Technol. 50, 13428–13435.
Xu, H., Sonke, J.E., Guinot, B., Fu, X., Sun, R., Lanzanova, A., 2017. Seasonal and annual variations in atmospheric Hg and Pb isotopes in Xi’an, China. Environ. Sci. Technol. 51, 3759–3766.
Xu, Y., Williams, R.H., Socolow, R.H., 2009. China′s rapid deployment of SO2 scrubbers. Energy Environ. Sci. 2, 459–465.
Yamakawa, A., Takami, A., Takeda, Y., Kato, S., Kajii, Y., 2019. Emerging investigator series: investigation of mercury emission sources using Hg isotopic compositions of atmospheric mercury at the Cape Hedo Atmosphere and Aerosol Monitoring Station (CHAAMS), Japan. Environ. Sci.: Processes Impacts, 21, 809–818.
Yin, R., Feng, X., Shi, W., 2010. Application of the stable-isotope system to the study of sources and fate of Hg in the environment: A review. Appl. Geochem. 25, 1467–1477.
Yu, B., Fu, X., Yin, R., Zhang, H., Wang, X., Lin, C., Wu, C., Zhang, Y., He, N., Fu, P., Wang, Z., Shang, L., Sommar, J., Sonke, J.E., Maurice, L., Guinot, B., Feng, X., 2016. Isotopic composition of atmospheric mercury in China: new evidence for sources and transformation processes in air and in vegetation. Environ. Sci. Technol. 50, 9262–9269.
Yuan, W., Sommar, J., Lin, C.J., Wang, X., Li, K., Liu, Y., Zhang, H., Lu, Z., Wu, C., Feng, X., 2019. Stable isotope evidence shows re-emission of elemental mercury vapor occurring after reductive loss from foliage. Environ. Sci. Technol. 53, 651–660.
Zhang, H., Lindberg, S.E., Gustin, M.S., 2001. Nature of diel trend of mercury emission from soil: Current understanding and hypotheses. Abstr. Pap.-Am. Chem. Soc. 222, U429.
Zhang, H., Nizzetto, L., Feng, X., Borgå, K., Sommar, J., Fu, X., Zhang, H., Zhang, G., Larssen, T., 2019. Assessing the air-surface exchange and fate of mercury in a subtropical forest using a novel passive exchange-meter device. Environ. Sci. Technol. 53, 4869−4879.
Zhang, L., Blanchard, P., Johnson, D., Dastoor, A., Ryzhkov, A., Lin, C.J., Vijayaraghavan, K., Gay, D., Holsen, T.M., Huang, J., Graydon, J.A., St. Louis, V.L., Castro, M.S., Miller, E.K., Marsik, F., Luk, J., Poissant, L., Pilote, M., Zang, K.M., 2012a. Assessment of modeled mercury dry deposition over the Great Lakes region. Environ. Pollut. 161, 272–283.
Zhang, L., Blanchard, P., Gay, D.A., Prestbo, E.M., Risch, M.R., Johnson, D., Narayan, J., Zsolway, R., Holsen, T.M., Miller, E.K., Castro, M.S., Graydon, J.A., St. Louis, V.L., Dalziel, J., 2012b. Estimation of speciated and total mercury dry deposition at monitoring locations in eastern and central North America. Atmos. Chem. Phys. 12, 4327–4340.
Zhang, L., He, Z., 2014. Technical Note: An empirical algorithm estimating dry deposition velocity of fine, coarse and giant particles. Atmos. Chem. Phys. 14, 3729−3737.
Zhang, L., Lyman, S., Mao, H., Lin, C.-J., Gay, D.A., Wang, S., Gustin, M.S., Feng, X., Wania, F., 2017. A synthesis of research needs for improving the understanding of atmospheric mercury cycling. Atmos. Chem. Phys. 17, 9133–9144.
Zhang, L., Wright, L.P., Blanchard, P., 2009. A review of current knowledge concerning dry deposition of atmospheric mercury. Atmos. Environ. 43, 5853–5864.
Zhang, L., Wu, Z., Cheng, I., Wright, L.P., Olson, M.L., Gay, D.A., Risch, M.R., Brooks, S., Castro, M.S., Conley, G.D., Edgerton, E.S., Holsen, T.M., Luke, W., Tordon, R., Weiss-Penzias, P.W., 2016a. The estimated six-year mercury dry deposition across North America. Environ. Sci. Technol. 50, 12864–12873.
Zhang, Y., Jacob, D.J., Horowitz, H.M., Chen, L., Amos, H.M., Krabbenhoft, D.P., Slemr, F., Louis, V.L.St., Sunderland, E.M., 2016b. Observed decrease in atmospheric mercury explained by global decline in anthropogenic emissions. Proc. Natl. Acad. Sci. U.S.A. 113, 526–531.
Zhang, H., Wang Z., Wang C., Zhang X., 2019. Concentrations and gas-particle partitioning of atmospheric reactive mercury at an urban site in Beijing, China. Environ. Pollut. 249, 13–23.
Zhao, Y., Zhong, H., Zhang, J., Nielsen, C.P., 2015. Evaluating the effects of China′s pollution controls on inter-annual trends and uncertainties of atmospheric mercury emissions. Atmos. Chem. Phys. 15, 4317–4337.
Zhao, S.Y., Zhang, H., Xie, B., 2018. The effects of El Niño southern oscillation on the winter haze pollution of China. Atmos. Chem. Phys. 18, 1863–1877.
Zhu, W., Lin, C.J., Wang, X., Sommar, J., Fu, X., Feng, X., 2016. Global observations and modelling of atmosphere–surface exchange of elemental mercury: a critical review. Atmos. Chem. Phys. 16, 4451–4480.
Zhou, H., Zhou, C., Lynam, M.M., Dvonch, J.T., Barres, James A., Hopke, P.K., Cohen, M., Holsen, T.M., 2017. Atmospheric mercury temporal trends in the northeastern United States from 1992 to 2014: are measured concentrations responding to decreasing regional emissions? Environ. Sci. Technol. Lett. 4, 91–97.
指導教授 許桂榮(Guey-Rong Sheu) 審核日期 2020-1-9
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明