博碩士論文 106821008 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:98 、訪客IP:18.117.162.107
姓名 范舒馨(Shu-Hsin Fan)  查詢紙本館藏   畢業系所 生命科學系
論文名稱 探討纖維母細胞生長因子在肌原細胞中對MyoD基因表達的調節
(The regulation of MyoD expression by basic fibroblast growth factor in myoblasts)
相關論文
★ Thirst control of water-seeking behavior in Drosophila★ KLHL17在癲癇與自閉症中之角色
★ MyoD對於PGC-1α 基因表現之調控機制★ 雄性素受體對於肌肉前驅細胞決定的功用
★ Nanog和Oct4表現對肌肉分化之影響★ 大量表現幹細胞專有轉錄因子抑制肌肉細胞走向分化
★ FOXOs 轉錄調控因子家族對肌肉細胞末期分化的影響★ 大量表現 Oct4 與 Nanog 抑制肌纖維母細胞 C2C12 分化
★ 在終極肌肉分化時,肌肉性bHLH轉錄因子對PGC-1α的調控★ FoxOs 大量表現對肌肉細胞末期分化的影響
★ 觀察肌肉生成轉錄因子如何調控 M- 和N- cadherin 表現★ Oc4和Nanog共同抑制末端肌肉分化
★ FoxO6在肌原母細胞中的代謝及分化中所扮演的角色★ PGC-1α 與 Stra13 間之交互作用
★ 探討大量表現 FoxO6 對肌肉終極分化的影響以及尋找 FoxO6 蛋白質在 PGC-1 alpha 啟動子上的結合位★ 探討丙戊酸 (Valporic acid) 於肌肉細胞中活化 Oct4 promoter 的機制
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 中文摘要
在脊椎動物中,軀幹體節(somite)的發育會受到周圍生長因子的影響。位於體節dermomyotome中的幹細胞受到從細胞外基質和神經管底層釋放的肌肉生成因子的影響,會走向表現Pax3和Pax7的肌肉幹細胞 (myogenic stem cells, MSC)。 之後,MSC細胞中的肌肉專一性調節因子(Muscle Regulatory Factors, MRFs) MyoD及Myf5的表現被誘發後,可活化下游與肌肉分化有關的基因表現,使MSC成為肌原母細胞 (myoblasts)。由於MyoD可以促使幹細胞走向肌肉發育,因此被稱為肌肉生成的主要調節因子。目前有文獻已知在體節附近分泌的纖維細胞生長因子 (bFGF)會響肌肉發育的過程,但是它對MyoD表達的影響仍然值得探討。本研究主要透過實驗室建立的MyoD promoter以及其上游的片段 (cis-element, -20~-6 kb),分析bFGF在肌肉分化過程中潛在的調控機制。我們的結果顯示經由處理bFGF的myoblasts,其MyoD表現量會被抑制且提高Pax3與Myf5的表現量,並促進細胞增生。透過分段測試MyoD promoter上游的cis-element,發現bFGF會藉由C片段 (-18 ~ -17kb)、G片段 (-14~ -13kb)、M片段 (-8 ~ -7kb) 影響MyoD promoter的活性,我們推測這些片段可能有影響MyoD promoter活性的轉錄因子結合區域。經由生物資訊軟體分析預測,篩選出AP1、AP4及Sox5為潛在的可受到bFGF影響而調控MyoD表現的轉錄因子。bFGF也透過活化MAPK (JNK, p38和Erk)與Akt訊息傳遞路徑調控AP1、AP4及Sox5的表現,之後的研究可以再探討潛在的轉錄因子與MyoD之間的調控關係。同時也發現bFGF雖然抑制MyoD promoter活性,但卻不影響MyoD調控下游的基因功能,所以bFGF應該不會干擾MyoD的正向自我活化。此外,我們也探討了Wnt3a和bFGF之間的關係,因為這兩種因子都對肌肉幹細胞生成和MyoD表達有很重要的影響。實驗結果顯示Wnt3a和bFGF同時存在對胚胎和成體肌肉細胞的肌肉發育信號的影響是一致,它們皆誘導Pax3、Myf5的表現去維持肌原細胞的特異性,並具有共同促進肌肉細胞再生及分化的功能。綜合以上結果,證明bFGF是透過多方面的信號傳遞途徑調控MyoD上游的轉錄因子,而這些不同的轉錄因子會結合在MyoD上游不同的cis-elements上,抑制MyoD的表現。
摘要(英) Abstract
In response to local myogenic signals transmitted from their surrounding tissues, some stem cells in dermomyotome of somites will become Pax3- and Pax7- expressing myogenic stem cells (MSC). These stem cells will be further confined within the myogenic lineage by the expression of muscle-specific transcription factors, either MyoD or Myf5 that will activate their downstream transcription factors and other muscle-specific genes to drive MSC to become myoblasts. MyoD is called as the master regulator of myogenesis and it can turn on the whole myogenic program in MSC or cells of other lineages, so induction of MyoD expression leads to determination and development of myogenic cells. A few signals found in the somite neighborhood, such as basic fibroblast growth factor (bFGF), released from extracellular matrix and the floor plate of neural tube have been found to promote myogenic program but their effects on MyoD expression has not been analyzed thoroughly. In this study, the MyoD-reporters driven by MyoD promoter and its upstream fragment (-20 ~ -6 kb) were used to analyze the potential regulatory mechanism of bFGF during muscle differentiation. Our results showed that myoblasts treated with bFGF not only inhibited the expression of MyoD but also increased the expression of Pax3 and Myf5 and promoted cell proliferation. Through screening a series of genomic fragments upstream of MyoD promoter, we found that bFGF affected the activity of MyoD promoter through the C fragment (-18~-17kb), G fragment (-14~-13kb) and M fragment (-8~-7kb). Based on the analysis and prediction of bioinformatics software, AP1, AP4, and Sox5 were identified as potential transcription factors that might be induced by bFGF to regulate MyoD expression. Later studies should explore the regulatory relationship between these potential transcription factors and MyoD. We also found that bFGF could activate MAPK (JNK, p38 and Erk) and Akt signaling pathways to trigger downstream gene expression. At the same time, we also found that although bFGF does not affect the transactivational activity of MyoD, implying that FGF does not interfere with the positive feedback loop of MyoD. In addition, we also explore the cooperation between Wnt3a and bFGF, because they have important effects on muscle stem cell proliferation and MyoD expression. We found the same effects in embryo and adult muscle cells that they both induce the expression of Pax3 and Myf5 to maintain the myogenic cell lineage and have the function of promoting muscle cell regeneration and differentiation. Based on the above results, it is proved that bFGF regulates the transcription factors upstream of MyoD through various signal transduction pathways, and these different transcription factors will bind to different cis-elements upstream of MyoD to inhibit its expression.
關鍵字(中) ★ 骨骼肌肉細胞
★ 肌原細胞
★ 肌原細胞決定因子
★ 纖維母細胞生長因子
★ Wnt3a
★ 肌肉分化過程
★ 啟動子
★ 轉錄因子
關鍵字(英) ★ skeletal muscle
★ myoblasts
★ MyoD
★ bFGF
★ Wnt3a
★ myogenesis
★ promoter
★ transcription factor
論文目次 目錄 (Table of Contents)
中文摘要 i
Abstract ii
聲明 Declaration iii
誌謝 Acknowledgement iv
縮寫 Abbreviations v
目錄 Table of Contents vi

一、簡介 Introduction 1
I. 肌原細胞 (Myoblast) 1
II. MRFs (Muscle Regulatory Factors)家族 2
III. MyoD對於骨骼肌肉發育的重要性(The importance of MyoD for skeletal muscle development) 2
IV. 纖維母細胞生長因子(basic fibroblast growth factor, bFGF) 3
V. 肌肉衛星細胞(Satellite cell) 4
VI. Wnt3a與肌肉發育之關係(Wnt3a and muscle development) 5
VII. 研究動機與目的 (Research motivation and purpose) 5
二、實驗材料與方法Materials and Methods 6
2-1 細胞株 (cell lines) 6
2-1-1穩定表現細胞株 (stable clone) 6
2-1-2 FVB老鼠胚胎的初代培養 (Mouse embryo primary culture) 7
2-2質體構築Cloning 7
2-2-1 質體 (plasmids) 7
2-2-2 菌株 (bacterium) 10
2-2-3 聚合酶鏈鎖反應 (Polymerase Chain Reaction ,PCR) 10
2-2-4 Insert DNA的純化 12
2-2-5 Vector 5’去磷酸根反應(Calf Intestinal Alkaline Phosphatase, C.I.P) 12
2-2-6 Klenow (DNA polymerase I, Large Fragment) 13
2-2-7接合反應 (Ligation) 13
2-2-8 大腸桿菌的轉型作用 (Transformation) 14
2-3 RT-PCR 14
2-3-1 Total RNA 製備: 14
2-3-2 反轉錄酶反應 (Reverse Transcriptase, RT) 14
2-4 Real Time PCR 定量實驗 15
2-5 細胞轉染作用 (Cell Transfection) 16
2-5-1 螢火蟲冷光活性方法 (Luciferase Activity Assay) 16
2-5-2 測protein 濃度及normalize方法 17
2-6 蛋白質表現及純化 (Protein expression and purification) 17
2-7 西方墨點實驗 (Western blot) 20
2-8 免疫染色 (Immunohistochemistry) 21
2-9 流式細胞儀分析技術(Flow Cytometric Analysis of Cell Cycle) 22
2-10 染色質免疫沉澱(ChIP, Chromatin immunoprecipitation assay) 24
三、實驗結果Results 27
3-1純化GST和bFGF recombination protein 27
3-2 確認純化的GST-bFGF protein是否具有促進細胞增生的功能 27
3-3 確認GST-bFGF protein是否會影響C2C12細胞分化 28
3-4 分別以10% FBS和5% HS兩種不同的medium 測試GST-bFGF對MyoD的影響是否相同 29
3-5 GST-bFGF透過AKT, MAPK signal pathway調控MyoD和其下游基因 29
3-6 探討GST-bFGF影響MyoD promoter cis-elements上哪些片段及預測相關的轉錄因子 30
3-7 觀察C2C12細胞從CMB到MT stage的過程中哪些基因的表現受到GST-bFGF影響 31
3-8 觀察在胚胎中哪些基因受到GST-bFGF影響 33
3-9 GST-bFGF是否也抑制了MyoD transactivity的能力導致大幅降低MyoG(Myogenin) promoter 轉錄活性 33
3-10 GST-bFGF和Wnt3a之間的interaction會影響C2C12細胞中哪些基因 34
3-11 GST-bFGF和Wnt3a之間的interaction會影響胚胎中哪些基因 35
四、實驗討論Discussion 36
4-1 GST-bFGF recombination protein的純化條件與其功能的確認 36
4-2 GST-bFGF可能會影響肌肉細胞的cell lineage 37
4-3 GST-bFGF和Wnt3a之間的interaction可能幫助肌肉細胞分化 37
4-4 GST-bFGF可能透過調控AP1或SOX5間接影響MyoD的基因表現 38
4-5 結論Conclusion 39
五、參考文獻References 40
六、圖表Figures 49
Fig.1純化GST和GST-bFGF蛋白 49
Fig.2純化的GST-bFGF對C2C12細胞生長的影響 53
Fig.3 GST-bFGF對C2C12細胞分化的影響 57
Fig.4測試GST-bFGF在10% FBS和5% HS培養液中對MyoD的影響 59
Fig.5探討GST-bFGF影響肌肉細胞分化相關基因表現及訊息傳遞路徑 60
Fig.6探討GST-bFGF對MyoD promoter cis-elements活性的影響 63
Fig.7觀察GST-bFGF對肌肉細胞從未分化到分化過程中基因表現的影響 72
Fig.8觀察GST-bFGF對老鼠胚胎肌肉發育的基因表現量之影響 76
Fig.9 GST-bFGF對MyoD transactivity的影響 78
Fig.10探討GST-bFGF和Wnt3a共同影響肌肉分化過程中的重要基因 79
Fig.11觀察GST-bFGF和Wnt3a同時存在會影響胚胎肌肉發育的哪些基因 84
Fig.12推測GST-bFGF可能會影響肌肉細胞的 cell lineage 86
Fig.13推測GST-bFGF和Wnt3a可能會共同促進肌肉細胞再生和分化 86
Fig.14 GST-bFGF可能調控AP1、AP4和Sox5竟而影響 MyoD的表現 87
附錄一 88
Supplementary figure1 從決定肌肉細胞命運到細胞分化的過程 88
Supplementary figure 2影響體節分化的主要旁分泌訊號 88
Supplementary figure 3肌肉發育過程中MRFs signal 分布 89
Supplementary figure 4 MyoD promoter和enhancer的重要活性部分 90
Supplementary figure 5 General growth factors signaling pathway 91
Supplementary figure 6 FGF2 signaling pathway 92
Supplementary figure 7 Satellite cell marker 93
附錄二 94
Supplementary figure 8 設計ChIP Assay實驗C、G、M片段中AP1、Sox5 binding site的primer 94
Supplementary figure 9探討低濃度的GST-bFGF和Wnt3a對C2C12 細胞的影響 95
Supplementary10 bFGF的蛋白質、DNA和胺基酸序列補充資訊 96
Supplementary11老鼠懷孕周期 (Mouse pregnancy cycle) 98
Supplementary12胚胎發育 (Embryogenesis) 99
附錄三 102
Primer 對照表 102
Clone 對照表 106
附錄四 107
抗體 107
溶液及試劑配方 108
參考文獻 五、參考文獻 References
1 Andras, N., Marina, G., Kristina, V., Richard, B. (2003). Manipulating the Mouse Embryo: A Laboratory Manual (Third Edition). Cold Spring Harbor Laboratory Press 764 .
2 Tajbakhsh, S., Borello, U., Vivarelli ,E., Kelly ,R., Papkoff, J., Duprez, D., Buckingham, M., Cossu, G. (1998) . Differential activation of Myf5 and MyoD by different Wnts in explants of mouse paraxial mesoderm and the later activation of myogenesis in the absence of Myf5. Development 125: 4155-4162.
3 Cossu, G., Kelly, R., Tajbakhsh, S., Di Donna, S., Vivarelli, E., Buckingham ,M. (1996). Activation of different myogenic pathways: myf-5 is induced by the neural tube and MyoD by the dorsal ectoderm in mouse paraxial mesoderm. Development 122: 429-437.
4 Borello, U., Coletta, M., Tajbakhsh, S., Leyns, L., De Robertis, E.M., Buckingham, M., and Cossu, G. (1999). Transplacental delivery of the Wnt antagonist Frzb1 inhibits development of caudal paraxial mesoderm and skeletal myogenesis in mouse embryos. Development 126 : 4247-4255.
5 Wosczyna, M. N., & Rando, T. A. (2018). A Muscle Stem Cell Support Group: Coordinated Cellular Responses in Muscle Regeneration. Dev Cell, 46(2) : 135-143.
6 Turner, N., & Grose, R. (2010). Fibroblast growth factor signalling: from development to cancer. Nat Rev Cancer, 10(2) : 116-129.
7 Ten Berge, D., Brugmann, S. A., Helms, J. A., & Nusse, R. (2008). Wnt and FGF signals interact to coordinate growth with cell fate specification during limb development. Development, 135(19) : 3247-3257.
8 Tajbakhsh, S. (2009). Skeletal muscle stem cells in developmental versus regenerative myogenesis. J Intern Med, 266(4) : 372-389.
9 Sudheer, S., Liu, J., Marks, M., Koch, F., Anurin, A., Scholze, M., Herrmann, B. G. (2016). Different Concentrations of FGF Ligands, FGF2 or FGF8 Determine Distinct States of WNT-Induced Presomitic Mesoderm. Stem Cells, 34(7) : 1790-1800.
10 Sonmez, A. B., & Castelnuovo, J. (2014). Applications of basic fibroblastic growth factor (FGF-2, bFGF) in dentistry. Dent Traumatol, 30(2) : 107-111.
11 Shen, X., Collier, J. M., Hlaing, M., Zhang, L., Delshad, E. H., Bristow, J., & Bernstein, H. S. (2003). Genome-wide examination of myoblast cell cycle withdrawal during differentiation. Dev Dyn, 226(1) : 128-138.
12 Shelton, M., Kocharyan, A., Liu, J., Skerjanc, I. S., & Stanford, W. L. (2016). Robust generation and expansion of skeletal muscle progenitors and myocytes from human pluripotent stem cells. Methods, 101 : 73-84.
13 Rodrigues, A. R., Yakushiji-Kaminatsui, N., Atsuta, Y., Andrey, G., Schorderet, P., Duboule, D., & Tabin, C. J. (2017). Integration of Shh and FGF signaling in controlling Hox gene expression in cultured limb cells. Proc Natl Acad Sci U S A, 114(12) : 3139-3144.
14 Regeenes, R., Silva, P. N., Chang, H. H., Arany, E. J., Shukalyuk, A. I., Audet, J., Rocheleau, J. V. (2018). Fibroblast growth factor receptor 5 (FGFR5) is a co-receptor for FGFR1 that is up-regulated in beta-cells by cytokine-induced inflammation. J Biol Chem, 293(44) : 17218-17228.
15 Borello, U., Berarducci, B., Murphy, P., Bajard, L., Buffa, V., Piccolo, S., Buckingham, M., Cossu, G. (2006). The Wnt/beta-catenin pathway regulates Gli-mediated Myf5 expression during somitogenesis. Development 133 : 3723-3732.
16 Brunelli, S., Relaix, F., Baesso, S., Buckingham, M., Cossu, G. (2007). Beta catenin-independent activation of MyoD in presomitic mesoderm requires PKC and depends on Pax3 transcriptional activity. Develomental biology 304 : 604-614.
17 Brack, A.S., Conboy, I.M.,Conbody, M.J,Shen, J., Rando,T.A.(2008). A temporal switch from notch to Wnt signaling in muscle stem cells is necessary for normal adult myogenesis.Cell Stem Cell 2 : 50-59.
18 Braun, T., Gautel, M.(2011). Transcriptional mechanisms regulating skeletal muscle differentiation, growth and homeostasis.Nature reviews Molecular cell biology 12 : 349-361.
19 Beauchamp, J.R., Heslop, L., Yu, D.S., Tajbakhsh, S., Kelly, R.G., Wernig, A., Buckingham, M.E., Partridge, T.A., and Zammit, P.S. (2000). Expression of CD34 and Myf5 defines the majority of quiescent adult skeletal muscle satellite cells. The Journal of cell biology 151 : 1221-1234.
20 Bhakdi, S., Bayley, H., Valeva, A., Walev, I., Walker, B., Kehoe, M., and Palmer, M. (1996). Staphylococcal alpha-toxin, streptolysin-O, and Escherichia coli hemolysin: prototypes of pore-forming bacterial cytolysins. Archives of microbiology 165 : 73-79.
21 Bhakdi, S., Tranum-Jensen, J., and Sziegoleit, A. (1985). Mechanism of membrane damage by streptolysin-O. Infection and immunity 47 : 52-60.
22 Carnac, G., Primig, M., Kitzmann, M., Chafey, P., Tuil, D., Lamb, N., and Fernandez, A. (1998). RhoA GTPase and serum response factor control selectively the expression of MyoD without affecting Myf5 in mouse myoblasts. Molecular biology of the cell 9 : 1891-1902.
23 Charge, S.B., and Rudnicki, M.A. (2004). Cellular and molecular regulation of muscle regeneration. Physiological reviews 84 : 209-238.
24 Cleland, J.L., Hedgepeth, C., and Wang, D.I. (1992). Polyethylene glycol enhanced refolding of bovine carbonic anhydrase B. Reaction stoichiometry and refolding model. The Journal of biological chemistry 267 : 13327-13334.
25 Cossu, G., Tajbakhsh, S., and Buckingham, M. (1996). How is myogenesis initiated in the embryo? Trends in Genetics 12 : 218-223.
26 Davies, K.E., and Nowak, K.J. (2006). Molecular mechanisms of muscular dystrophies: old and new players. Nature reviews Molecular cell biology 7 : 762-773.
27 de la Serna, I.L., Carlson, K.A., and Imbalzano, A.N. (2001). Mammalian SWI/SNF complexes promote MyoD-mediated muscle differentiation. Nature genetics 27 : 187-190.
28 Edmondson, D.G., and Olson, E.N. (1993). Helix-loop-helix proteins as regulators of muscle-specific transcription. The Journal of biological chemistry 268 : 755-758.
29 Esteban, M.A., Wang, T., Qin, B., Yang, J., Qin, D., Cai, J., Li, W., Weng, Z., Chen, J., Ni, S., et al. (2010). Vitamin C enhances the generation of mouse and human induced pluripotent stem cells. Cell Stem Cell 6 : 71-79.
30 Pan, Y. C., Wang, X. W., Teng, H. F., Wu, Y. J., Chang, H, C., Chen, S. L. (2015) . Wnt3a signal pathways activate MyoD expression by targeting cis-elements inside and outside its distal enhancer. Bioscience Reports 18 : 35(2).
31 Ezzat, S., and Asa, S.L. (2005). FGF receptor signaling at the crossroads of endocrine homeostasis and tumorigenesis. Horm Metab Res 37 : 355-360.
32 Fallon, J.F., Lopez, A., Ros, M.A., Savage, M.P., Olwin, B.B., and Simandl, B.K. (1994). FGF-2: apical ectodermal ridge growth signal for chick limb development. Science (New York, NY) 264 : 104-107.
33 Gottlicher, M., Minucci, S., Zhu, P., Kramer, O.H., Schimpf, A., Giavara, S., Sleeman, J.P., Lo Coco, F., Nervi, C., Pelicci, P.G., et al. (2001). Valproic acid defines a novel class of HDAC inhibitors inducing differentiation of transformed cells. The EMBO journal 20 : 6969-6978.
34 Hirai, H., Tani, T., and Kikyo, N. (2010). Structure and functions of powerful transactivators: VP16, MyoD and FoxA. The International journal of developmental biology 54 : 1589-1596.
35 Horsley, V., Jansen, K.M., Mills, S.T., and Pavlath, G.K. (2003). IL-4 acts as a myoblast recruitment factor during mammalian muscle growth. Cell 113 : 483-494.
36 Goldhamer, D.J., Brunk, B.P., Faerman, A., King, A., Shani, M., Emerson ,C.P.(1995). Embryonic activation of the myoD gene is regulated by a highly conserved distal control element. Development 121: 637-649.
37 Huangfu, D., Osafune, K., Maehr, R., Guo, W., Eijkelenboom, A., Chen, S., Muhlestein, W., and Melton, D.A. (2008). Induction of pluripotent stem cells from primary human fibroblasts with only Oct4 and Sox2. Nature biotechnology 26 : 1269-1275.
38 Hugo, F., Reichwein, J., Arvand, M., Kramer, S., and Bhakdi, S. (1986). Use of a monoclonal antibody to determine the mode of transmembrane pore formation by streptolysin O. Infection and immunity 54 : 641-645.
39 Koenig, M., Hoffman, E.P., Bertelson, C.J., Monaco, A.P., Feener, C., and Kunkel, L.M. (1987). Complete cloning of the duchenne muscular dystrophy (DMD) cDNA and preliminary genomic organization of the DMD gene in normal and affected individuals. Cell 50 : 509-517.
40 Koenig, M., Monaco, A.P., and Kunkel, L.M. (1988). The complete sequence of dystrophin predicts a rod-shaped cytoskeletal protein. Cell 53 : 219-228.
41 Lanner, F., and Rossant, J. (2010). The role of FGF/Erk signaling in pluripotent cells. Development (Cambridge, England) 137 : 3351-3360.
42 Lee, J.C., and Timasheff, S.N. (1981). The stabilization of proteins by sucrose. The Journal of biological chemistry 256 : 7193-7201.
43 Lee, T.J., Jang, J., Kang, S., Jin, M., Shin, H., Kim, D.W., and Kim, B.S. (2013). Enhancement of osteogenic and chondrogenic differentiation of human embryonic stem cells by mesodermal lineage induction with BMP-4 and FGF2 treatment. Biochemical and biophysical research communications 430 : 793-797.
44 Mauro, A. (1961). Satellite cell of skeletal muscle fibers. The Journal of biophysical and biochemical cytology 9 : 493-495.
45 Millay, D.P., O′Rourke, J.R., Sutherland, L.B., Bezprozvannaya, S., Shelton, J.M., Bassel-Duby, R., and Olson, E.N. (2013). Myomaker is a membrane activator of myoblast fusion and muscle formation. Nature 499 : 301-305.
46 Nishikawa, S., Goldstein, R.A., and Nierras, C.R. (2008). The promise of human induced pluripotent stem cells for research and therapy. Nature reviews Molecular cell biology 9 : 725-729.
47 Odom, G.L., Gregorevic, P., and Chamberlain, J.S. (2007). Viral-mediated gene therapy for the muscular dystrophies: successes, limitations and recent advances. Biochimica et biophysica acta 1772 : 243-262.
48 Ordahl, C.P., and Williams, B.A. (1998). Knowing chops from chuck: roasting myoD redundancy. BioEssays : news and reviews in molecular, cellular and developmental biology 20 : 357-362.
49 Pan, T., Li, X., Xie, W., Jankovic, J., and Le, W. (2005). Valproic acid-mediated Hsp70 induction and anti-apoptotic neuroprotection in SH-SY5Y cells. FEBS letters 579 : 6716-6720.
50 Parker, M.H., Seale, P., and Rudnicki, M.A. (2003). Looking back to the embryo: defining transcriptional networks in adult myogenesis. Nat Rev Genet 4 : 497-507.
51 Piette, J., Bessereau, J.-L., Huchet, M., and Changeux, J.-P. (1990). Two adjacent MyoD1-binding sites regulate expression of the acetylcholine receptor [alpha]-subunit gene. Nature 345 : 353-355.
52 Pourquie, O., Fan, C.M., Coltey, M., Hirsinger, E., Watanabe, Y., Breant, C., Francis-West, P., Brickell, P., Tessier-Lavigne, M., and Le Douarin, N.M. (1996). Lateral and axial signals involved in avian somite patterning: a role for BMP4. Cell 84 : 461-471.
53 Riley, B.B., Savage, M.P., Simandl, B.K., Olwin, B.B., and Fallon, J.F. (1993). Retroviral expression of FGF-2 (bFGF) affects patterning in chick limb bud. Development 118 : 95-104.
54 Rodrigues, M., Griffith, L.G., and Wells, A. (2010). Growth factor regulation of proliferation and survival of multipotential stromal cells. Stem cell research & therapy 1 : 32.
55 Rudnicki, M.A., and Jaenisch, R. (1995). The MyoD family of transcription factors and skeletal myogenesis. BioEssays : news and reviews in molecular, cellular and developmental biology 17 : 203-209.
56 Sartorelli, V., Huang, J., Hamamori, Y., and Kedes, L. (1997). Molecular mechanisms of myogenic coactivation by p300: direct interaction with the activation domain of MyoD and with the MADS box of MEF2C. Molecular and cellular biology 17 : 1010-1026.
57 Schwartz, S.M., and Liaw, L. (1993). Growth control and morphogenesis in the development and pathology of arteries. Journal of cardiovascular pharmacology 21 : S31-49.
58 Watanabe, S., Hirai, H., Asakura, Y., Tastad, C., Verma, M., Keller, C., Dutton, J.R., Asakura, A. (2011). MyoD gene suppression by Oct4 is required for reprogramming in myoblasts to produce induced pluripotent stem cells. Stem Cells. 29(3):505-16.
59 Thayer, M.J., Tapscott, S.J., Davis, R.L., Wright, W.E., Lassar, A.B., and Weintraub, H. (1989). Positive autoregulation of the myogenic determination gene MyoD1. Cell 58 : 241-248.
60 Tsumoto, K., Umetsu, M., Kumagai, I., Ejima, D., Philo, J.S., and Arakawa, T. (2004). Role of arginine in protein refolding, solubilization, and purification. Biotechnology progress 20 : 1301-1308.
61 Tyagi, M., Rusnati, M., Presta, M., and Giacca, M. (2001). Internalization of HIV-1 Tat Requires Cell Surface Heparan Sulfate Proteoglycans. Journal of Biological Chemistry 276 : 3254-3261.
62 Vainikka, S., Partanen, J., Bellosta, P., Coulier, F., Birnbaum, D., Basilico, C., Jaye, M., and Alitalo, K. (1992). Fibroblast growth factor receptor-4 shows novel features in genomic structure, ligand binding and signal transduction. The EMBO journal 11 : 4273-4280.
63 Wadia, J.S., and Dowdy, S.F. (2002). Protein transduction technology. Current Opinion in Biotechnology 13 : 52-56.
64 Wang, X.W., Chen, S.L. (2012). Identifying the Wnt3a signaling pathway targeted regions in MyoD promoter and the role of FoxO1 in Myogenesis.(NCU Thesis)
65 Wallace, G.Q., and McNally, E.M. (2009). Mechanisms of muscle degeneration, regeneration, and repair in the muscular dystrophies. Annual review of physiology 71 : 37-57.
66 Weintraub, H., Tapscott, S.J., Davis, R.L., Thayer, M.J., Adam, M.A., Lassar, A.B., and Miller, A.D. (1989). Activation of muscle-specific genes in pigment, nerve, fat, liver, and fibroblast cell lines by forced expression of MyoD. Proceedings of the National Academy of Sciences of the United States of America 86 : 5434-5438.
67 Weller, U., Müller, L., Messner, M., Palmer, M., Valeva, A., Tranum-Jensen, J., Agrawal, P., Biermann, C., Döbereiner, A., Kehoe, M.A., et al. (1996). Expression of Active Streptolysin O in Escherichia coli as a Maltose-Binding-Protein-Streptolysin-O Fusion Protein. European Journal of Biochemistry 236 : 34-39.
68 Yun, K., and Wold, B. (1996). Skeletal muscle determination and differentiation: story of a core regulatory network and its context. Current opinion in cell biology 8, 877-889.
69 Brack, A.S., Conboy, M.J., Roy, S., Lee, M., Kuo, C.J., Keller, C.,Rando, T.A. (2007). Increased Wnt signaling during aging alters muscle stem cell fate and increases fibrosis. Science 317 : 807–810
70 Teng, H.F., Kuo,Y.L., Loo, M.R., Li, C.L. Chu ,T.W., Suo, H., Liu, H.S., Lin, K. H., Chen, S. L. (2010). Valproic acid enhances Oct4 promoter activity in myogenic cells. Cellular Biochemistry 110 : 995-1004
71 Ginovanni,T., Kenneth,C.A. (2015). The Molecular Basis of Cancer (Fourth Edition), 455-466.
72 Relaix, F., Montarras, D., Zaffran, S., Gayraud-Morel, B.,Rocancourt, D., Tajbakhsh, S., Mansouri, A., Cumano, A.,Buckingham, M. (2006). Pax3 and Pax7 have distinct and overlapping functions in adult muscle progenitor cells. J. Cell Biol.172 : 91–102
73 Kanisicak, Mendez, J.J.,Yamamoto, S., Yamamoto, M., Goldhamer, D.J. (2009). Progenitors of skeletal muscle satellite cells express the muscle determination gene, MyoD. Dev. Biol.332(1):131-41
74 Ott, M.O., Bober, E., Lyons, G., Arnold, H.,Buckingham, M. (1991). Early expression of the myogenic regulatory gene, myf-5, in precursor cells of skeletal muscle in the mouse embryo.Development 111 : 1097–1107
75 Hinterberger, T.J., Sassoon, D.A., Rhodes, S.J.,Konieczny, S.F.(1991). Expression of the muscle regulatory factor MRF4 during somite and skeletal myofiber development. Dev. Biol. 147 : 144–156
76 Pownall, M.E.,Emerson, Jr, C.P. (1992). Sequential activation of three myogenic regulatory genes during somite morphogenesis in quail embryos. Dev. Biol. 151 : 67–79
77 Braun, T., Rudnicki, M.A., Arnold, H.H., Jaenisch, R. (1992). Targeted inactivation of the muscle regulatory gene myf-5 results in abnormal rib development and perinatal death. Cell 71 : 369–382
78 Rudnicki, M.A., Braun, T., Hinuma, S., Jaenisch, R. (1992). Inactivation of MyoD in mice leads to up-regulation of the myogenic HLH gene myf-5 and results in apparently normal muscle development. Cell 71 : 383–390
79 Rudnicki, M.A., Schnegelsberg, P.N., Stead, R.H., Braun, T., Arnold,H.H., Jaenisch, R. (1993). MyoD or Myf-5 is required for the formation of skeletal muscle. Cell 75 : 1351–1359
80 Asakura, A., Lyons, G.E., Tapscott, S.J.(1995). The Regulation of MyoD Gene Expression: Conserved Elements Mediate Expression in Embryonic Axial Muscle. Dev. Biol.171 : 386-98
81 Soleimani,V.D., Yin, H., Arezu, J.A., Ming, H., Kockx, C.E.M., Wilfred, F.J.I., Grosveld, F., Rudnicki, M.A. (2012). Snail Regulates MyoD Binding-Site Occupancy to Direct Enhancer Switching and Differentiation-Specific Transcription in Myogenesis. Mol Cell. 47(3): 457–468.
指導教授 陳盛良(Shen-Liang Chen) 審核日期 2020-1-17
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明