參考文獻 |
五、參考文獻 References
1 Andras, N., Marina, G., Kristina, V., Richard, B. (2003). Manipulating the Mouse Embryo: A Laboratory Manual (Third Edition). Cold Spring Harbor Laboratory Press 764 .
2 Tajbakhsh, S., Borello, U., Vivarelli ,E., Kelly ,R., Papkoff, J., Duprez, D., Buckingham, M., Cossu, G. (1998) . Differential activation of Myf5 and MyoD by different Wnts in explants of mouse paraxial mesoderm and the later activation of myogenesis in the absence of Myf5. Development 125: 4155-4162.
3 Cossu, G., Kelly, R., Tajbakhsh, S., Di Donna, S., Vivarelli, E., Buckingham ,M. (1996). Activation of different myogenic pathways: myf-5 is induced by the neural tube and MyoD by the dorsal ectoderm in mouse paraxial mesoderm. Development 122: 429-437.
4 Borello, U., Coletta, M., Tajbakhsh, S., Leyns, L., De Robertis, E.M., Buckingham, M., and Cossu, G. (1999). Transplacental delivery of the Wnt antagonist Frzb1 inhibits development of caudal paraxial mesoderm and skeletal myogenesis in mouse embryos. Development 126 : 4247-4255.
5 Wosczyna, M. N., & Rando, T. A. (2018). A Muscle Stem Cell Support Group: Coordinated Cellular Responses in Muscle Regeneration. Dev Cell, 46(2) : 135-143.
6 Turner, N., & Grose, R. (2010). Fibroblast growth factor signalling: from development to cancer. Nat Rev Cancer, 10(2) : 116-129.
7 Ten Berge, D., Brugmann, S. A., Helms, J. A., & Nusse, R. (2008). Wnt and FGF signals interact to coordinate growth with cell fate specification during limb development. Development, 135(19) : 3247-3257.
8 Tajbakhsh, S. (2009). Skeletal muscle stem cells in developmental versus regenerative myogenesis. J Intern Med, 266(4) : 372-389.
9 Sudheer, S., Liu, J., Marks, M., Koch, F., Anurin, A., Scholze, M., Herrmann, B. G. (2016). Different Concentrations of FGF Ligands, FGF2 or FGF8 Determine Distinct States of WNT-Induced Presomitic Mesoderm. Stem Cells, 34(7) : 1790-1800.
10 Sonmez, A. B., & Castelnuovo, J. (2014). Applications of basic fibroblastic growth factor (FGF-2, bFGF) in dentistry. Dent Traumatol, 30(2) : 107-111.
11 Shen, X., Collier, J. M., Hlaing, M., Zhang, L., Delshad, E. H., Bristow, J., & Bernstein, H. S. (2003). Genome-wide examination of myoblast cell cycle withdrawal during differentiation. Dev Dyn, 226(1) : 128-138.
12 Shelton, M., Kocharyan, A., Liu, J., Skerjanc, I. S., & Stanford, W. L. (2016). Robust generation and expansion of skeletal muscle progenitors and myocytes from human pluripotent stem cells. Methods, 101 : 73-84.
13 Rodrigues, A. R., Yakushiji-Kaminatsui, N., Atsuta, Y., Andrey, G., Schorderet, P., Duboule, D., & Tabin, C. J. (2017). Integration of Shh and FGF signaling in controlling Hox gene expression in cultured limb cells. Proc Natl Acad Sci U S A, 114(12) : 3139-3144.
14 Regeenes, R., Silva, P. N., Chang, H. H., Arany, E. J., Shukalyuk, A. I., Audet, J., Rocheleau, J. V. (2018). Fibroblast growth factor receptor 5 (FGFR5) is a co-receptor for FGFR1 that is up-regulated in beta-cells by cytokine-induced inflammation. J Biol Chem, 293(44) : 17218-17228.
15 Borello, U., Berarducci, B., Murphy, P., Bajard, L., Buffa, V., Piccolo, S., Buckingham, M., Cossu, G. (2006). The Wnt/beta-catenin pathway regulates Gli-mediated Myf5 expression during somitogenesis. Development 133 : 3723-3732.
16 Brunelli, S., Relaix, F., Baesso, S., Buckingham, M., Cossu, G. (2007). Beta catenin-independent activation of MyoD in presomitic mesoderm requires PKC and depends on Pax3 transcriptional activity. Develomental biology 304 : 604-614.
17 Brack, A.S., Conboy, I.M.,Conbody, M.J,Shen, J., Rando,T.A.(2008). A temporal switch from notch to Wnt signaling in muscle stem cells is necessary for normal adult myogenesis.Cell Stem Cell 2 : 50-59.
18 Braun, T., Gautel, M.(2011). Transcriptional mechanisms regulating skeletal muscle differentiation, growth and homeostasis.Nature reviews Molecular cell biology 12 : 349-361.
19 Beauchamp, J.R., Heslop, L., Yu, D.S., Tajbakhsh, S., Kelly, R.G., Wernig, A., Buckingham, M.E., Partridge, T.A., and Zammit, P.S. (2000). Expression of CD34 and Myf5 defines the majority of quiescent adult skeletal muscle satellite cells. The Journal of cell biology 151 : 1221-1234.
20 Bhakdi, S., Bayley, H., Valeva, A., Walev, I., Walker, B., Kehoe, M., and Palmer, M. (1996). Staphylococcal alpha-toxin, streptolysin-O, and Escherichia coli hemolysin: prototypes of pore-forming bacterial cytolysins. Archives of microbiology 165 : 73-79.
21 Bhakdi, S., Tranum-Jensen, J., and Sziegoleit, A. (1985). Mechanism of membrane damage by streptolysin-O. Infection and immunity 47 : 52-60.
22 Carnac, G., Primig, M., Kitzmann, M., Chafey, P., Tuil, D., Lamb, N., and Fernandez, A. (1998). RhoA GTPase and serum response factor control selectively the expression of MyoD without affecting Myf5 in mouse myoblasts. Molecular biology of the cell 9 : 1891-1902.
23 Charge, S.B., and Rudnicki, M.A. (2004). Cellular and molecular regulation of muscle regeneration. Physiological reviews 84 : 209-238.
24 Cleland, J.L., Hedgepeth, C., and Wang, D.I. (1992). Polyethylene glycol enhanced refolding of bovine carbonic anhydrase B. Reaction stoichiometry and refolding model. The Journal of biological chemistry 267 : 13327-13334.
25 Cossu, G., Tajbakhsh, S., and Buckingham, M. (1996). How is myogenesis initiated in the embryo? Trends in Genetics 12 : 218-223.
26 Davies, K.E., and Nowak, K.J. (2006). Molecular mechanisms of muscular dystrophies: old and new players. Nature reviews Molecular cell biology 7 : 762-773.
27 de la Serna, I.L., Carlson, K.A., and Imbalzano, A.N. (2001). Mammalian SWI/SNF complexes promote MyoD-mediated muscle differentiation. Nature genetics 27 : 187-190.
28 Edmondson, D.G., and Olson, E.N. (1993). Helix-loop-helix proteins as regulators of muscle-specific transcription. The Journal of biological chemistry 268 : 755-758.
29 Esteban, M.A., Wang, T., Qin, B., Yang, J., Qin, D., Cai, J., Li, W., Weng, Z., Chen, J., Ni, S., et al. (2010). Vitamin C enhances the generation of mouse and human induced pluripotent stem cells. Cell Stem Cell 6 : 71-79.
30 Pan, Y. C., Wang, X. W., Teng, H. F., Wu, Y. J., Chang, H, C., Chen, S. L. (2015) . Wnt3a signal pathways activate MyoD expression by targeting cis-elements inside and outside its distal enhancer. Bioscience Reports 18 : 35(2).
31 Ezzat, S., and Asa, S.L. (2005). FGF receptor signaling at the crossroads of endocrine homeostasis and tumorigenesis. Horm Metab Res 37 : 355-360.
32 Fallon, J.F., Lopez, A., Ros, M.A., Savage, M.P., Olwin, B.B., and Simandl, B.K. (1994). FGF-2: apical ectodermal ridge growth signal for chick limb development. Science (New York, NY) 264 : 104-107.
33 Gottlicher, M., Minucci, S., Zhu, P., Kramer, O.H., Schimpf, A., Giavara, S., Sleeman, J.P., Lo Coco, F., Nervi, C., Pelicci, P.G., et al. (2001). Valproic acid defines a novel class of HDAC inhibitors inducing differentiation of transformed cells. The EMBO journal 20 : 6969-6978.
34 Hirai, H., Tani, T., and Kikyo, N. (2010). Structure and functions of powerful transactivators: VP16, MyoD and FoxA. The International journal of developmental biology 54 : 1589-1596.
35 Horsley, V., Jansen, K.M., Mills, S.T., and Pavlath, G.K. (2003). IL-4 acts as a myoblast recruitment factor during mammalian muscle growth. Cell 113 : 483-494.
36 Goldhamer, D.J., Brunk, B.P., Faerman, A., King, A., Shani, M., Emerson ,C.P.(1995). Embryonic activation of the myoD gene is regulated by a highly conserved distal control element. Development 121: 637-649.
37 Huangfu, D., Osafune, K., Maehr, R., Guo, W., Eijkelenboom, A., Chen, S., Muhlestein, W., and Melton, D.A. (2008). Induction of pluripotent stem cells from primary human fibroblasts with only Oct4 and Sox2. Nature biotechnology 26 : 1269-1275.
38 Hugo, F., Reichwein, J., Arvand, M., Kramer, S., and Bhakdi, S. (1986). Use of a monoclonal antibody to determine the mode of transmembrane pore formation by streptolysin O. Infection and immunity 54 : 641-645.
39 Koenig, M., Hoffman, E.P., Bertelson, C.J., Monaco, A.P., Feener, C., and Kunkel, L.M. (1987). Complete cloning of the duchenne muscular dystrophy (DMD) cDNA and preliminary genomic organization of the DMD gene in normal and affected individuals. Cell 50 : 509-517.
40 Koenig, M., Monaco, A.P., and Kunkel, L.M. (1988). The complete sequence of dystrophin predicts a rod-shaped cytoskeletal protein. Cell 53 : 219-228.
41 Lanner, F., and Rossant, J. (2010). The role of FGF/Erk signaling in pluripotent cells. Development (Cambridge, England) 137 : 3351-3360.
42 Lee, J.C., and Timasheff, S.N. (1981). The stabilization of proteins by sucrose. The Journal of biological chemistry 256 : 7193-7201.
43 Lee, T.J., Jang, J., Kang, S., Jin, M., Shin, H., Kim, D.W., and Kim, B.S. (2013). Enhancement of osteogenic and chondrogenic differentiation of human embryonic stem cells by mesodermal lineage induction with BMP-4 and FGF2 treatment. Biochemical and biophysical research communications 430 : 793-797.
44 Mauro, A. (1961). Satellite cell of skeletal muscle fibers. The Journal of biophysical and biochemical cytology 9 : 493-495.
45 Millay, D.P., O′Rourke, J.R., Sutherland, L.B., Bezprozvannaya, S., Shelton, J.M., Bassel-Duby, R., and Olson, E.N. (2013). Myomaker is a membrane activator of myoblast fusion and muscle formation. Nature 499 : 301-305.
46 Nishikawa, S., Goldstein, R.A., and Nierras, C.R. (2008). The promise of human induced pluripotent stem cells for research and therapy. Nature reviews Molecular cell biology 9 : 725-729.
47 Odom, G.L., Gregorevic, P., and Chamberlain, J.S. (2007). Viral-mediated gene therapy for the muscular dystrophies: successes, limitations and recent advances. Biochimica et biophysica acta 1772 : 243-262.
48 Ordahl, C.P., and Williams, B.A. (1998). Knowing chops from chuck: roasting myoD redundancy. BioEssays : news and reviews in molecular, cellular and developmental biology 20 : 357-362.
49 Pan, T., Li, X., Xie, W., Jankovic, J., and Le, W. (2005). Valproic acid-mediated Hsp70 induction and anti-apoptotic neuroprotection in SH-SY5Y cells. FEBS letters 579 : 6716-6720.
50 Parker, M.H., Seale, P., and Rudnicki, M.A. (2003). Looking back to the embryo: defining transcriptional networks in adult myogenesis. Nat Rev Genet 4 : 497-507.
51 Piette, J., Bessereau, J.-L., Huchet, M., and Changeux, J.-P. (1990). Two adjacent MyoD1-binding sites regulate expression of the acetylcholine receptor [alpha]-subunit gene. Nature 345 : 353-355.
52 Pourquie, O., Fan, C.M., Coltey, M., Hirsinger, E., Watanabe, Y., Breant, C., Francis-West, P., Brickell, P., Tessier-Lavigne, M., and Le Douarin, N.M. (1996). Lateral and axial signals involved in avian somite patterning: a role for BMP4. Cell 84 : 461-471.
53 Riley, B.B., Savage, M.P., Simandl, B.K., Olwin, B.B., and Fallon, J.F. (1993). Retroviral expression of FGF-2 (bFGF) affects patterning in chick limb bud. Development 118 : 95-104.
54 Rodrigues, M., Griffith, L.G., and Wells, A. (2010). Growth factor regulation of proliferation and survival of multipotential stromal cells. Stem cell research & therapy 1 : 32.
55 Rudnicki, M.A., and Jaenisch, R. (1995). The MyoD family of transcription factors and skeletal myogenesis. BioEssays : news and reviews in molecular, cellular and developmental biology 17 : 203-209.
56 Sartorelli, V., Huang, J., Hamamori, Y., and Kedes, L. (1997). Molecular mechanisms of myogenic coactivation by p300: direct interaction with the activation domain of MyoD and with the MADS box of MEF2C. Molecular and cellular biology 17 : 1010-1026.
57 Schwartz, S.M., and Liaw, L. (1993). Growth control and morphogenesis in the development and pathology of arteries. Journal of cardiovascular pharmacology 21 : S31-49.
58 Watanabe, S., Hirai, H., Asakura, Y., Tastad, C., Verma, M., Keller, C., Dutton, J.R., Asakura, A. (2011). MyoD gene suppression by Oct4 is required for reprogramming in myoblasts to produce induced pluripotent stem cells. Stem Cells. 29(3):505-16.
59 Thayer, M.J., Tapscott, S.J., Davis, R.L., Wright, W.E., Lassar, A.B., and Weintraub, H. (1989). Positive autoregulation of the myogenic determination gene MyoD1. Cell 58 : 241-248.
60 Tsumoto, K., Umetsu, M., Kumagai, I., Ejima, D., Philo, J.S., and Arakawa, T. (2004). Role of arginine in protein refolding, solubilization, and purification. Biotechnology progress 20 : 1301-1308.
61 Tyagi, M., Rusnati, M., Presta, M., and Giacca, M. (2001). Internalization of HIV-1 Tat Requires Cell Surface Heparan Sulfate Proteoglycans. Journal of Biological Chemistry 276 : 3254-3261.
62 Vainikka, S., Partanen, J., Bellosta, P., Coulier, F., Birnbaum, D., Basilico, C., Jaye, M., and Alitalo, K. (1992). Fibroblast growth factor receptor-4 shows novel features in genomic structure, ligand binding and signal transduction. The EMBO journal 11 : 4273-4280.
63 Wadia, J.S., and Dowdy, S.F. (2002). Protein transduction technology. Current Opinion in Biotechnology 13 : 52-56.
64 Wang, X.W., Chen, S.L. (2012). Identifying the Wnt3a signaling pathway targeted regions in MyoD promoter and the role of FoxO1 in Myogenesis.(NCU Thesis)
65 Wallace, G.Q., and McNally, E.M. (2009). Mechanisms of muscle degeneration, regeneration, and repair in the muscular dystrophies. Annual review of physiology 71 : 37-57.
66 Weintraub, H., Tapscott, S.J., Davis, R.L., Thayer, M.J., Adam, M.A., Lassar, A.B., and Miller, A.D. (1989). Activation of muscle-specific genes in pigment, nerve, fat, liver, and fibroblast cell lines by forced expression of MyoD. Proceedings of the National Academy of Sciences of the United States of America 86 : 5434-5438.
67 Weller, U., Müller, L., Messner, M., Palmer, M., Valeva, A., Tranum-Jensen, J., Agrawal, P., Biermann, C., Döbereiner, A., Kehoe, M.A., et al. (1996). Expression of Active Streptolysin O in Escherichia coli as a Maltose-Binding-Protein-Streptolysin-O Fusion Protein. European Journal of Biochemistry 236 : 34-39.
68 Yun, K., and Wold, B. (1996). Skeletal muscle determination and differentiation: story of a core regulatory network and its context. Current opinion in cell biology 8, 877-889.
69 Brack, A.S., Conboy, M.J., Roy, S., Lee, M., Kuo, C.J., Keller, C.,Rando, T.A. (2007). Increased Wnt signaling during aging alters muscle stem cell fate and increases fibrosis. Science 317 : 807–810
70 Teng, H.F., Kuo,Y.L., Loo, M.R., Li, C.L. Chu ,T.W., Suo, H., Liu, H.S., Lin, K. H., Chen, S. L. (2010). Valproic acid enhances Oct4 promoter activity in myogenic cells. Cellular Biochemistry 110 : 995-1004
71 Ginovanni,T., Kenneth,C.A. (2015). The Molecular Basis of Cancer (Fourth Edition), 455-466.
72 Relaix, F., Montarras, D., Zaffran, S., Gayraud-Morel, B.,Rocancourt, D., Tajbakhsh, S., Mansouri, A., Cumano, A.,Buckingham, M. (2006). Pax3 and Pax7 have distinct and overlapping functions in adult muscle progenitor cells. J. Cell Biol.172 : 91–102
73 Kanisicak, Mendez, J.J.,Yamamoto, S., Yamamoto, M., Goldhamer, D.J. (2009). Progenitors of skeletal muscle satellite cells express the muscle determination gene, MyoD. Dev. Biol.332(1):131-41
74 Ott, M.O., Bober, E., Lyons, G., Arnold, H.,Buckingham, M. (1991). Early expression of the myogenic regulatory gene, myf-5, in precursor cells of skeletal muscle in the mouse embryo.Development 111 : 1097–1107
75 Hinterberger, T.J., Sassoon, D.A., Rhodes, S.J.,Konieczny, S.F.(1991). Expression of the muscle regulatory factor MRF4 during somite and skeletal myofiber development. Dev. Biol. 147 : 144–156
76 Pownall, M.E.,Emerson, Jr, C.P. (1992). Sequential activation of three myogenic regulatory genes during somite morphogenesis in quail embryos. Dev. Biol. 151 : 67–79
77 Braun, T., Rudnicki, M.A., Arnold, H.H., Jaenisch, R. (1992). Targeted inactivation of the muscle regulatory gene myf-5 results in abnormal rib development and perinatal death. Cell 71 : 369–382
78 Rudnicki, M.A., Braun, T., Hinuma, S., Jaenisch, R. (1992). Inactivation of MyoD in mice leads to up-regulation of the myogenic HLH gene myf-5 and results in apparently normal muscle development. Cell 71 : 383–390
79 Rudnicki, M.A., Schnegelsberg, P.N., Stead, R.H., Braun, T., Arnold,H.H., Jaenisch, R. (1993). MyoD or Myf-5 is required for the formation of skeletal muscle. Cell 75 : 1351–1359
80 Asakura, A., Lyons, G.E., Tapscott, S.J.(1995). The Regulation of MyoD Gene Expression: Conserved Elements Mediate Expression in Embryonic Axial Muscle. Dev. Biol.171 : 386-98
81 Soleimani,V.D., Yin, H., Arezu, J.A., Ming, H., Kockx, C.E.M., Wilfred, F.J.I., Grosveld, F., Rudnicki, M.A. (2012). Snail Regulates MyoD Binding-Site Occupancy to Direct Enhancer Switching and Differentiation-Specific Transcription in Myogenesis. Mol Cell. 47(3): 457–468. |