博碩士論文 107327601 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:9 、訪客IP:18.226.248.77
姓名 宮田正三(Shozo Miyata)  查詢紙本館藏   畢業系所 光機電工程研究所
論文名稱 Fabrication and Characterization of Electrostatic and Electromagnetic MEMS Vibration Energy Harvesters
(Fabrication and Characterization of Electrostatic and Electromagnetic MEMS Vibration Energy Harvesters)
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   至系統瀏覽論文 ( 永不開放)
摘要(中) 本論文提出了頻率可調的駐極體靜電式能量擷取器和寬頻帶電磁式能量擷取器。其中靜電式元件由彈簧和三角梳狀電極組成,由於梳狀電極之間的靜電力會影響樑的運動,因此可藉由彈簧軟化作用,降低元件的共振頻率。電磁式元件的部分,模擬了線圈的尖端位移、感應電壓與輸出功率。最後比較了靜電式和電磁式能量收集器的性能。
摘要(英) This paper reports a frequency-tunable electret electrostatic (ES) vibration-based microelectromechanical systems energy harvester and wide bandwidth electromagnetic (EM) energy harvester. For ES type, the proposed device consists of folded-beam springs and triangular-comb electrodes. The electrostatic force between combs affects the movement of the beams, lowering the resonant frequency due to the spring softening effect. The device (size: 2 cm × 2 cm × 750 µm) was fabricated using a conventional microfabrication process. The harvester was charged to about 204 V through a bias temperature procedure and an oxidization process. The resonant frequency was controlled by changing the angle of the shaker on which device was mounted, which changed the initial gap between combs. The experimental results showed that the resonant frequency could be tuned from 54.1 to 55.9 Hz and that the power output was 8.4 µW at maximum and more than 2.7 µW at an acceleration of 7 mGRMS with the optimal resistance of 6 MΩ. A normalized power density of 204 mW/cm3/G2 was achieved. For EM type, the displacement of the tip of the coil, inductive voltage and the optimal output power of 1-DOF and 2-DOF EM energy harvester were simulated. The simulation successfully realizes the same order of the experimental results for all. With written energy harvesters, the performance of the ES and EM energy harvester based on the scaling method was compared and it was found that the tendency of the theory proposed by trimmer and reported harvesters match.
關鍵字(中) ★ 微機電系統
★ 能量擷取
★ 電磁式
★ 靜電式
關鍵字(英)
論文目次 Abstract i
Acknowledgement ii
Table of Contents iii
List of Figures vi
List of Tables ix
Explanation of Symbols x
1 Introduction 1
1.1 Background 1
1.2 Review 3
1.2.1 Frequency tunable energy harvester 3
1.2.2 Wide bandwidth energy harvester 4
1.3 Objective 5
1.4 Structure 6
2 A frequency-tunable electret electrostatic MEMS vibration energy harvester with triangular-comb electrodes 7
2.1 Principle of electrostatic transducer 7
2.1.1 Principle and dynamic characteristic of comb-type electro-static transducer 7
2.1.2 Principle and dynamic characteristic of parallel-plate-type electrostatic transducer 11
2.1.3 Principle and dynamic characteristic of triangle-comb electrostatic transducer 14
2.1.4 Energy balance and non-linearity 18
2.2 Fabrication of MEMS energy harvester 23
2.2.1 Structure of tunable electrostatic energy harvester 23
2.2.2 Microfabrication process 24
2.2.3 Oxidization process and BT procedure 25
2.2.4 Charged voltage measurement 28
2.2.5 Device parameter 29
2.3 Experimental result and discussion 32
2.3.1 Sweeping frequency experiment 32
2.3.2 Driving at actual environmental vibration 38
3 Simulation of a 2-DOF wide bandwidth energy harvester with silver spiral coils 40
3.1 Simulation for one-coil-layer harvester 40
3.1.1 Motion equation based on mathematical model 40
3.1.2 Parameters for simulation 42
3.1.3 Inductive voltage and generated optimal power 45
3.1.4 Simulation result and discussion for the one-layer-coil harvester 48
3.2 Simulation for two-coil-layer harvester 57
3.2.1 Motion equation, inductive voltage and optimal output power 57
3.2.2 Simulation result and discussion for the two-layer-coil harvester 59
4 The performance comparison between electrostatic and electromagnetic energy harvester in terms of scaling 65
4.1 Trimmer’s scaling law and microsystem 65
4.1.1 Scaling of electromagnetic force 66
4.1.2 Scaling of electrostatic force 71
4.1.3 Power generation and consumption 72
4.2 Performance comparison 73
5 Conclusion and Future Work 75
5.1 Conclusion 75
5.2 Future Work 75
5.2.1 Frequency tunable electrostatic energy harvester 75
5.2.2 Simulation of a 2-DOF electromagnetic energy harvester 76
6 Reference 77
參考文獻 [1] H. Koga, H. Mitsuya, H. Honma, H. Fujita, H. Toshiyoshi and G. Hashiguchi, ”Development of a cantilever-type electrostatic energy harvester and its charging characteristics on a highway viaduct,” Micromachines, vol. 8, p. 293, 2017.
[2] H. Honma, H. Mitsuya, G. Hashiguchi and H. Toshiyoshi, ”Improvement of energy conversion effectiveness and maximum output power of electrostatic induction-type MEMS energy harvesters by using symmetric comb-electrode structures,” Journal of Micromechanical Microengineering, vol. 28, p. 064005, 2018.
[3] S. Neiss, F. Goldshmidtboeing, M. Kroener and P. Woias, ”Tunable nonlinear piezoelectric vibration harvester,” Journal of Physics: Conference Series, vol. 557, no. 1, p. 012113, 2014.
[4] S. Bouhedma, Y. Zheng, F. Lange and D. Hohlfeld, ”Magnetic Frequency Tuning of a Multimodal Vibration Energy Harvester,” Sensors, vol. 19, no. 5, p. 1149, 2019.
[5] F. T. Fisher, V. R. Challa and M. G. Prasad, ”High efficiency energy harvesting device with magnetic coupling for resonance frequency tuning,” in In Proceedings of Sensors and Smart Structures Technologies for Civil, Mechanical, and Aerospace Systems 2008, San Diego, California, United States, 2008.
[6] W. Sun, J. Jeehyun and S. Jongwon, ”Frequency-tunable electromagnetic energy harvester using magneto-rheological elastomer,” Journal of Intelligent Material Systems and Structures, vol. 27, no. 7, pp. 959-979, 2016.
[7] W. Al-Ashtari, M. Hunstig, T. Hemsel and W. Sextro, ”Frequency tuning of piezoelectric energy harvesters by magnetic force,” Smart Materials and Structures, vol. 21, no. 3, p. 035019, 2012.
[8] V. R. Challa, M. G. Prasad, Y. Shi and F. T. Fisher, ”A vibration energy harvesting device with bidirectional resonance frequency tunability,” Smart Materials and Structures, vol. 17, no. 1, p. 015035, 2008.
[9] M. G. Vasundhara, M. Senthilkumar and G. K. Kalavathi, ”A distributed parametric model of Brinson shape memory alloy based resonant frequency tunable cantilevered PZT energy harvester,” International Journal of Mechanics and Materials in Design, vol. 15, no. 3, pp. 555-568, 2019.
[10] G. Todorov, T. Todorov, I. Ivanov, S. Valtchev and B. Klaassens, ”Tuning techniques for kinetic MEMS energy harvesters,” in 2011 IEEE 33rd International Telecommunications Energy Conference (INTELEC), Amsterdam, the Netherlands, 2011.
[11] L. Dong, M. D. Grissom, T. Safwat, M. G. Prasad and F. T. Fisher, ”Resonant frequency tuning of electroactive polymer membranes via an applied bias voltage,” Smart Materials and Structures, vol. 27, no. 11, p. 114005, 2018.
[12] S. E. Jo, M. S. Kim and Y. J. Kim, ”Passive-self-tunable vibrational energy harvester,” in 2011 16th International Solid-State Sensors, Actuators and Microsystems Conference, Beijing, China, 2011.
[13] X. Wu, J. Lin, S. Kato, K. Zhang, T. Ren and L. Liu, ”A frequency adjustable vibration energy harvester,” Proceedings of PowerMEMS, pp. 245-248, 2008.
[14] A. Morel, G. Pillonnet, P. Gasnier, E. Lefeuvre and A. Badel, ”Frequency tuning of piezoelectric energy harvesters thanks to a short-circuit synchronous electric charge extraction,” Smart Materials and Structures, vol. 28, no. 2, p. 025009, 2018.
[15] M. Wischke, M. Masur, F. Goldschmidtboeing and P. Woias, ”Electromagnetic vibration harvester with piezoelectrically tunable resonance frequency,” Journal of Micromechanics and Microengineering, vol. 20, no. 3, p. 035025, 2010.
[16] C. Peters, D. Maurath, W. Schock and Y. Manoli, ”Novel electrically tunable mechanical resonator for energy harvesting,” in Proc. PowerMEMS 2008, Sendai, Japan, 2008.
[17] C. Eichhorn, F. Goldschimidtboeing and P. Woias, ”Bidirectional frequency tuning of a piezoelectric energy converter based on a cantilever beam,” Journal of Micromechanics and Microengineering, vol. 19, no. 9, p. 094006, 2009.
[18] C. Eichhorn, F. Goldschmidtboeing, Y. Porro and P. Woias, ”A piezoelectric harvester with an integrated frequency-tuning mechanism,” in PowerMEMS2009, Washington DC, USA, 2009.
[19] C. Erichorn, R. Tchagsim, N. Wilhelm and P. Woias, ”A smart and self-sufficient frequency tunable vibration energy harvester,” Journal of Micromechanics and Microengineering, vol. 21, no. 10, p. 104003, 2011.
[20] A. Pydah and R. C. Batra, ”Beam-Based Vibration Energy Harvesters Tunable Through Folding,” Journal of Vibration and Acoustics, vol. 141, no. 1, p. 011003, 2018.
[21] S. Sun, D. Yunna, X. Xiang, G. Ding and X. Zhao, ”MEMS-based wide-bandwidth electromagnetic energy harvester with electroplated nickel structure,” Journal of Micromechanics and Microengineering, vol. 27, no. 11, p. 115007, 2017.
[22] P. Podder, P. Constantinou, D. Mallick and S. Roy, ”Magnetic Tuning of Nonlinear MEMS Electromagnetic Vibration Energy Harvester,” Journal of Microelectromechanical Systems, vol. 26, no. 3, pp. 539-549, 2017.
[23] K. Tao, J. Wu, L. Tang, X. Xia, W. L. Sun, J. Miao and X. Hu, ”A novel two-degree-of-freedom MEMS electromagnetic vibration energy harvester,” Journal of Micromechanics and Microengineering, vol. 26, no. 3, p. 035020, 2016.
[24] H. Liu, Q. You and L. K. Cheng, ”A multi-frequency vibration-based MEMS electromagnetic energy harvesting device,” Sensors and Actuators A: Physical, vol. 204, pp. 37-43, 2013.
[25] B. Yang and L. K. Cheng, ”Non-resonant electromagnetic wideband energy harvesting mechanism for low frequency vibrations,” Microsystem Technologies, vol. 16, no. 6, pp. 961-966, 2010.
[26] H. Liu, T. Chen, L. Sun and L. K. Cheng, ”An Electromagnetic MEMS Energy Harvester Array with Multiple Vibration Modes,” Micromachines, vol. 6, no. 8, pp. 984-992, 2015.
[27] N. Fujiwara, K. Asami, Y. Iriye, T. Koike, T. Tsuchiya and G. Hashiguchi, ”Development and experimental validation of automatic conversion procedure from mechanical to electrical connection for MEMS equivalent circuit,” IEEJ Transactions on Electrical and Electronic Engineering, vol. 4, no. 3, pp. 352-357, 2009.
[28] G. Hashiguchi, ”Electromechanical theory of microelectromechanical devices,” IEICE Electronics Express, vol. 11, no. 18, pp. 20142007-20142007, 2014.
[29] S. Tezuka, ”An Analytic Solution of the Approximate Governing Equation of the Electrostatically Actuated Structures in Systems with One Degree of Freedom Involving the Second Order Displacement Terms,” IEEJ Transactions on Sensors and Micromachines, vol. 130, no. 11, pp. 528-530, 2010.
[30] R. A. C. Altafim, J. A. Giacometti and J. M. Janiszewski, ”A novel method for electret production using impulse voltages,” [1991 Proceedings,” in 7th International Symposium on Electrets (ISE 7), Berlin, Germany, 1991.
[31] U. Mescheder, P. Urbanovic, B. Müller1 and S. Baborie, ”CHARGING OF SIO2 ELECTRET FILM BY ION IMPLANTATION FOR MEMS BASED ENERGY HARVESTING SYSTEMS,” in Proceedings of Power MEMS, Sendai, Japan, 2008.
[32] P. Günther, ”SiO2 electrets for electric-field generation in sensors and actuators,” Sensors and Actuators A: Physical, vol. 32, no. 1, pp. 357-360, 1992.
[33] Y. Shibata, T. Sugiyama, H. Mimura and G. Hashiguchi, ”In Situ Measurement of Charging Process in Electret-Based Comb-Drive Actuator and High-Voltage Charging,” Journal of Microelectromechanical Systems, vol. 24, no. 4, pp. 1052-1060, 2015.
[34] T. Seto, ”環境電磁ノイズ発電素子に関する研究,” Shizuoka University, Master Thesis [in Japanese], 2019.
[35] H. Honma, Y. Tohyama, H. Mitsuya, G. Hashiguchi, H. Fujita and H. Toshiyoshi, ”A power-density-enhanced MEMS electrostatic energy harvester with symmetrized high-aspect ratio comb electrodes,” Journal of Micromechanics and Microengineering, vol. 29, no. 8, p. 084002, 2019.
[36] T. Ishiguro, Shizuoka University, Master Thesis [in Japanese], 2020.
[37] A. Mizutani, ”通電過熱によるカリウムイオンエレクトレット素子の作製,” Shizuoka University, Bachelor Thesis [in Japanese], 2020.
[38] R. Legtenberg, A. W. Groenveld and M. Elwenspoek, ”Comb-drive actuators for large displacements,” Journal of Micromechanical Microengineering, vol. 6, pp. 320-329, 1996.
[39] S. S. Mohan, M. d. M. Hershenson, S. P. Boyd and T. H. Lee, ”Simple accurate expressions for planar spiral inductances,” IEEE Journal of Solid-State Circuits, vol. 34, no. 10, pp. 1419-1424, 1999.
[40] W. S. N. Trimmer, ”Microrobots and micromechanical systems,” Sensors and Actuators, vol. 19, no. 3, pp. 267-287, 1989.
[41] G. Hashiguchi, ”スケーリング則とマイクロシステム,” in マイクロメカニクス, Shizuoka University [in Japanese], 2015, pp. 5-11.
[42] Y. Yang, U. Radhakrishna, D. Ward, A. P. Chandrakasan and J. H. Lang, ”A Silicon MEMS EM vibration energy harvester,” in PowerMEMS 2018 conference, Daytona, USA, 2018.
[43] Y. Chiu and Y. C. Lee, ”Flat and robust out-of-plane vibrational electret energy harvester,” Journal of Micromechanics and Microengineering, vol. 23, no. 1, p. 015012, 2013.
[44] A. Crovetto, F. Wang and O. Hansen, ”An electret-based energy harvesting device with a wafer-level fabrication process,” Journal of Micromechanics and Microengineering, vol. 23, no. 11, p. 114010, 2013.
[45] K. Tao, J. Miao, S. W. Lye and X. Hu, ”Sandwich-structured two-dimensional MEMS electret power generator for low-level ambient vibrational energy harvesting,” Sensors and Actuators A: Physical, vol. 228, pp. 95-103, 2015.
[46] E. Sardini and M. Serpelloni, ”An efficient electromagnetic power harvesting device for low-frequency applications,” Sensors and Actuators A: Physical, vol. 172, no. 2, pp. 475-482, 2011.
[47] A. R. N. Foisal, C. Hong and G. S. Chung, ”Multi-frequency electromagnetic energy harvester using a magnetic spring cantilever,” Sensors and Actuators A: Physical, vol. 182, pp. 106-113, 2012.
[48] P. Wang, K. Tanaka, S. Sugiyama, X. Dai, X. Zhao and J. Liu, ”A micro electromagnetic low level vibration energy harvester based on MEMS technology,” Microsystem Technologies, vol. 15, no. 6, pp. 941-951, 2009.
[49] J. C. Park, D. H. Bang and J. Y. Park, ”Micro-Fabricated Electromagnetic Power Generator to Scavenge Low Ambient Vibration,” IEEE Transactions on Magnetics, vol. 46, no. 6, pp. 1937-1942, 2010.
[50] K. Tao, S. Liu, S. W. Lye, J. Miao and X. Hu, ”A three-dimensional electret-based micro power generator for low-level ambient vibrational energy harvesting,” Journal of Micromechanics and Microengineering, vol. 24, no. 6, p. 065022, 2014.
[51] K. Tao, S. W. Lye, J. Miao, L. Tang and X. Hu, ”Out-of-plane electret-based MEMS energy harvester with the combined nonlinear effect from electrostatic force and a mechanical elastic stopper,” Journal of Micromechanics and Microengineering, vol. 25, no. 10, p. 104014, 2015.
[52] Y. Zhang, T. Wang, A. Luo, Y. Hu, X. Li and F. Wang, ”Micro electrostatic energy harvester with both broad bandwidth and high normalized power density,” Applied Energy, vol. 212, pp. 362-371, 2018.
[53] P. Basset, D. Galayko, F. Cottone, R. Guillemet, E. Blokhina, F. Marty and T. Bourouina, ”Electrostatic vibration energy harvester with combined effect of electrical nonlinearities and mechanical impact,” Journal of Micromechanics and Microengineering, vol. 24, no. 3, p. 035001, 2014.
指導教授 陳世叡 橋口原 審核日期 2020-4-1
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明