參考文獻 |
1. REN21, 2018, Renewables 2018 Global Status Report, (Paris: REN21 Secretariat).
2. Robinius, M.; Raje, T.; Nykamp, S.; Rott, T.; Müller, M.; Grube, T.; Katzenbach, B.; Küppers, S.; Stolten, D., Power-to-Gas: Electrolyzers as an alternative to network expansion – An example from a distribution system operator. Applied Energy 2018, 210, 182-197.
3. Different scenarios for producing renewable hydrogen and electricity.
4. Hosseini, S. E.; Wahid, M. A., Hydrogen production from renewable and sustainable energy resources: Promising green energy carrier for clean development. Renewable and Sustainable Energy Reviews 2016, 57, 850-866.
5. Zou, X.; Zhang, Y., Noble metal-free hydrogen evolution catalysts for water splitting. Chem Soc Rev 2015, 44 (15), 5148-80.
6. FLETCHER, S., Tafel slopes from first principles. Journal of Solid State Electrochemistry 2009, 13 (4), pp. 537–549.
7. Walter, M. G.; Warren, E. L.; McKone, J. R.; Boettcher, S. W.; Mi, Q.; Santori, E. A.; Lewis, N. S., Solar water splitting cells. Chem Rev 2010, 110 (11), 6446-73.
8. Faber, M. S.; Dziedzic, R.; Lukowski, M. A.; Kaiser, N. S.; Ding, Q.; Jin, S., High-performance electrocatalysis using metallic cobalt pyrite (CoS(2)) micro- and nanostructures. J Am Chem Soc 2014, 136 (28), 10053-61.
9. Li, W.; Gao, X.; Xiong, D.; Xia, F.; Liu, J.; Song, W. G.; Xu, J.; Thalluri, S. M.; Cerqueira, M. F.; Fu, X.; Liu, L., Vapor-solid synthesis of monolithic single-crystalline CoP nanowire electrodes for efficient and robust water electrolysis. Chem Sci 2017, 8 (4), 2952-2958.
10. Zhang, L.; Wu, H. B.; Yan, Y.; Wang, X.; Lou, X. W., Hierarchical MoS2microboxes constructed by nanosheets with enhanced electrochemical properties for lithium storage and water splitting. Energy Environ. Sci. 2014, 7 (10), 3302-3306.
11. Zhou, H.; Yu, F.; Sun, J.; He, R.; Wang, Y.; Guo, C. F.; Wang, F.; Lan, Y.; Ren, Z.; Chen, S., Highly active and durable self-standing WS2/graphene hybrid catalysts for the hydrogen evolution reaction. Journal of Materials Chemistry A 2016, 4 (24), 9472-9476.
12. Popczun, E. J.; McKone, J. R.; Read, C. G.; Biacchi, A. J.; Wiltrout, A. M.; Lewis, N. S.; Schaak, R. E., Nanostructured nickel phosphide as an electrocatalyst for the hydrogen evolution reaction. J Am Chem Soc 2013, 135 (25), 9267-70.
13. Zhang, C.; Lv, W.; Tao, Y.; Yang, Q.-H., Towards superior volumetric performance: design and preparation of novel carbon materials for energy storage. Energy & Environmental Science 2015, 8 (5), 1390-1403.
14. Raccichini, R.; Varzi, A.; Passerini, S.; Scrosati, B., The role of graphene for electrochemical energy storage. Nature Materials 2014, 14, 271.
15. Dai, L., Carbon-based catalysts for metal-free electrocatalysis. Current Opinion in Electrochemistry 2017.
16. Stoller, M. D.; Park, S.; Zhu, Y.; An, J.; Ruoff, R. S., Graphene-Based Ultracapacitors. Nano Letters 2008, 8 (10), 3498-3502.
17. Zhang, L.; Xiao, J.; Wang, H.; Shao, M., Carbon-based Electrocatalysts for Hydrogen and Oxygen Evolution Reactions. ACS Catalysis 2017.
18. Liang, J.; Jiao, Y.; Jaroniec, M.; Qiao, S. Z., Sulfur and nitrogen dual-doped mesoporous graphene electrocatalyst for oxygen reduction with synergistically enhanced performance. Angew Chem Int Ed Engl 2012, 51 (46), 11496-500.
19. Jiao, Y.; Zheng, Y.; Davey, K.; Qiao, S.-Z., Activity origin and catalyst design principles for electrocatalytic hydrogen evolution on heteroatom-doped graphene. Nature Energy 2016, 1 (10).
20. Gong, K.; Du, F.; Xia, Z.; Durstock, M.; Dai, L., Nitrogen-Doped Carbon Nanotube Arrays with High Electrocatalytic Activity for Oxygen Reduction. Science 2009, 323 (5915), 760-764.
21. Ma, T. Y.; Dai, S.; Jaroniec, M.; Qiao, S. Z., Graphitic carbon nitride nanosheet-carbon nanotube three-dimensional porous composites as high-performance oxygen evolution electrocatalysts. Angew Chem Int Ed Engl 2014, 53 (28), 7281-5.
22. Bo, X.; Han, C.; Zhang, Y.; Guo, L., Confined Nanospace Synthesis of Less Aggregated and Porous Nitrogen-Doped Graphene As Metal-Free Electrocatalysts for Oxygen Reduction Reaction in Alkaline Solution. ACS Applied Materials & Interfaces 2014, 6 (4), 3023-3030.
23. Shinde, S. S.; Sami, A.; Lee, J.-H., Nitrogen- and Phosphorus-Doped Nanoporous Graphene/Graphitic Carbon Nitride Hybrids as Efficient Electrocatalysts for Hydrogen Evolution. ChemCatChem 2015, 7 (23), 3873-3880.
24. Zheng, Y.; Jiao, Y.; Ge, L.; Jaroniec, M.; Qiao, S. Z., Two-step boron and nitrogen doping in graphene for enhanced synergistic catalysis. Angew Chem Int Ed Engl 2013, 52 (11), 3110-6.
25. Zheng, Y.; Jiao, Y.; Li, L. H.; Xing, T.; Chen, Y.; Jaroniec, M.; Qiao, S. Z., Toward Design of Synergistically Active Carbon-Based Catalysts for Electrocatalytic Hydrogen Evolution. ACS Nano 2014, 8 (5), 5290-5296.
26. Yue, X.; Huang, S.; Jin, Y.; Shen, P. K., Nitrogen and fluorine dual-doped porous graphene-nanosheets as efficient metal-free electrocatalysts for hydrogen-evolution in acidic media. Catalysis Science & Technology 2017, 7 (11), 2228-2235.
27. Choi, C. H.; Chung, M. W.; Kwon, H. C.; Park, S. H.; Woo, S. I., B, N- and P, N-doped graphene as highly active catalysts for oxygen reduction reactions in acidic media. Journal of Materials Chemistry A 2013, 1 (11).
28. Zhang, J.; Qu, L.; Shi, G.; Liu, J.; Chen, J.; Dai, L., N,P-Codoped Carbon Networks as Efficient Metal-free Bifunctional Catalysts for Oxygen Reduction and Hydrogen Evolution Reactions. Angew Chem Int Ed Engl 2016, 55 (6), 2230-4.
29. Zhou, J.; Yue, H.; Qi, F.; Wang, H.; Chen, Y., Significantly enhanced electrocatalytic properties of three-dimensional graphene foam via Ar plasma pretreatment and N, S co-doping. International Journal of Hydrogen Energy 2017, 42 (44), 27004-27012.
30. Kundu, S.; Yadav, R. M.; Narayanan, T. N.; Shelke, M. V.; Vajtai, R.; Ajayan, P. M.; Pillai, V. K., Synthesis of N, F and S co-doped graphene quantum dots. Nanoscale 2015, 7 (27), 11515-9.
31. Zhang, J.; Dai, L., Nitrogen, Phosphorus, and Fluorine Tri-doped Graphene as a Multifunctional Catalyst for Self-Powered Electrochemical Water Splitting. Angew Chem Int Ed Engl 2016, 55 (42), 13296-13300.
32. Shi, Y.; Zhang, B., Recent advances in transition metal phosphide nanomaterials: synthesis and applications in hydrogen evolution reaction. Chem Soc Rev 2016, 45 (6), 1529-41.
33. Pu, Z.; Amiinu, I. S.; Liu, X.; Wang, M.; Mu, S., Ultrastable nitrogen-doped carbon encapsulating molybdenum phosphide nanoparticles as highly efficient electrocatalyst for hydrogen generation. Nanoscale 2016, 8 (39), 17256-17261.
34. Pu, Z.; Ya, X.; Amiinu, I. S.; Tu, Z.; Liu, X.; Li, W.; Mu, S., Ultrasmall tungsten phosphide nanoparticles embedded in nitrogen-doped carbon as a highly active and stable hydrogen-evolution electrocatalyst. Journal of Materials Chemistry A 2016, 4 (40), 15327-15332.
35. Zhuang, M.; Ou, X.; Dou, Y.; Zhang, L.; Zhang, Q.; Wu, R.; Ding, Y.; Shao, M.; Luo, Z., Polymer-Embedded Fabrication of Co2P Nanoparticles Encapsulated in N,P-Doped Graphene for Hydrogen Generation. Nano Lett 2016, 16 (7), 4691-8.
36. Lu, J.; Zhou, W.; Wang, L.; Jia, J.; Ke, Y.; Yang, L.; Zhou, K.; Liu, X.; Tang, Z.; Li, L.; Chen, S., Core–Shell Nanocomposites Based on Gold Nanoparticle@Zinc–Iron-Embedded Porous Carbons Derived from Metal–Organic Frameworks as Efficient Dual Catalysts for Oxygen Reduction and Hydrogen Evolution Reactions. ACS Catalysis 2016, 6 (2), 1045-1053.
37. Liu, X.; Dai, L., Carbon-based metal-free catalysts. Nature Reviews Materials 2016, 1 (11).
38. Dobbelaere, T.; Vereecken, P. M.; Detavernier, C., A USB-controlled potentiostat/galvanostat for thin-film battery characterization. HardwareX 2017, 2, 34-49.
39. Yan, D.; Dou, S.; Tao, L.; Liu, Z.; Liu, Z.; Huo, J.; Wang, S., Electropolymerized supermolecule derived N, P co-doped carbon nanofiber networks as a highly efficient metal-free electrocatalyst for the hydrogen evolution reaction. J. Mater. Chem. A 2016, 4 (36), 13726-13730.
40. Qu, K.; Zheng, Y.; Zhang, X.; Davey, K.; Dai, S.; Qiao, S. Z., Promotion of Electrocatalytic Hydrogen Evolution Reaction on Nitrogen-Doped Carbon Nanosheets with Secondary Heteroatoms. ACS Nano 2017, 11 (7), 7293-7300.
|