參考文獻 |
[1] A. B. Stambouli and E. Traversa, “Solid oxide fuel cells (SOFCs): a review of an environmentally clean and efficient source of energy,” Renewable and Sustainable Energy Reviews, vol. 6, no. 5, pp. 433–455, Oct. 2002, doi: 10.1016/S1364-0321(02)00014-X.
[2] R. N. Basu, “12. Materials for Solid Oxide Fuel Cells,” Recent Trends in Fuel Cell Science and Technology, p. 46, 2012.
[3] S. M. Haile, “Fuel cell materials and components☆☆☆The Golden Jubilee Issue—Selected topics in Materials Science and Engineering: Past, Present and Future, edited by S. Suresh.,” Acta Materialia, vol. 51, no. 19, pp. 5981–6000, Nov. 2003, doi: 10.1016/j.actamat.2003.08.004.
[4] N. Mahato, A. Banerjee, A. Gupta, S. Omar, and K. Balani, “Progress in material selection for solid oxide fuel cell technology: A review,” Progress in Materials Science, vol. 72, pp. 141–337, Jul. 2015, doi: 10.1016/j.pmatsci.2015.01.001.
[5] R. M. Ormerod, “Solid oxide fuel cells,” Chem. Soc. Rev., vol. 32, no. 1, pp. 17–28, Dec. 2003, doi: 10.1039/b105764m.
[6] Y. Okuyama, N. Ebihara, K. Okuyama, and Y. Mizutani, “Improvement of Protonic Ceramic Fuel Cells with Thin Film BCZY Electrolyte,” ECS Transactions, vol. 68, no. 1, pp. 2545–2553, Jul. 2015, doi: 10.1149/06801.2545ecst.
[7] N. Minh, “Solid oxide fuel cell technology features and applications,” Solid State Ionics, vol. 174, no. 1–4, pp. 271–277, Oct. 2004, doi: 10.1016/j.ssi.2004.07.042.
[8] Subhas Singhal and Kevin Kendall, “High-temperature Solid Oxide Fuel Cells: Fundamentals, Design and Applications,” Materials Today, vol. 5, no. 12, p. 55, Dec. 2002, doi: 10.1016/S1369-7021(02)01241-5.
[9] M. L. Faro, D. L. Rosa, V. Antonucci, and A. S. Arico, “Intermediate temperature solid oxide fuel cell electrolytes,” vol. 89, p. 18, 2009.
[10] S. P. S. Badwal and F. T. Ciacchi, “Oxygen-ion conducting electrolyte materials for solid oxide fuel cells,” Ionics, vol. 6, no. 1–2, pp. 1–21, Jan. 2000, doi: 10.1007/BF02375543.
[11] C. Sun, R. Hui, and J. Roller, “Cathode materials for solid oxide fuel cells: a review,” Journal of Solid State Electrochemistry, vol. 14, no. 7, pp. 1125–1144, Jul. 2010, doi: 10.1007/s10008-009-0932-0.
[12] H. Iwahara, T. Esaka, H. Uchida, and N. Maeda, “Proton Conduction in Sintered Oxides and Its Application to Steam Electrolysis for Hydrogen Production,” Solid State Ionics, vol. 3–4, pp. 359–363, 1981, doi: https://doi.org/10.1016/0167-2738(81)90113-2.
[13] D. Medvedev, A. Murashkina, E. Pikalova, A. Demin, A. Podias, and P. Tsiakaras, “BaCeO3: Materials development, properties and application,” Progress in Materials Science, vol. 60, pp. 72–129, Mar. 2014, doi: 10.1016/j.pmatsci.2013.08.001.
[14] M. A. Laguna-Bercero, “Recent advances in high temperature electrolysis using solid oxide fuel cells: A review,” Journal of Power Sources, vol. 203, pp. 4–16, Apr. 2012, doi: 10.1016/j.jpowsour.2011.12.019.
[15] J. Fergus, “Effect of cathode and electrolyte transport properties on chromium poisoning in solid oxide fuel cells,” International Journal of Hydrogen Energy, vol. 32, no. 16, pp. 3664–3671, Nov. 2007, doi: 10.1016/j.ijhydene.2006.08.005.
[16] W. He, W. Lv, and J. Dickerson, Gas Transport in Solid Oxide Fuel Cells. Cham: Springer International Publishing, 2014.
[17] A. Grimaud et al., “Hydration Properties and Rate Determining Steps of the Oxygen Reduction Reaction of Perovskite-Related Oxides as H+-SOFC Cathodes,” Journal of The Electrochemical Society, vol. 159, no. 6, p. B683, 2012, doi: 10.1149/2.101205jes.
[18] Y. Chen et al., “Advances in Cathode Materials for Solid Oxide Fuel Cells: Complex Oxides without Alkaline Earth Metal Elements,” Advanced Energy Materials, vol. 5, no. 18, p. 1500537, Sep. 2015, doi: 10.1002/aenm.201500537.
[19] H. A. Taroco, J. A. F. Santos, R. Z. Domingues, and T. Matencio, “Ceramic Materials for Solid Oxide Fuel Cells,” in Advances in Ceramics - Synthesis and Characterization, Processing and Specific Applications, In Tech, 2011.
[20] Thomas O. Mason, “Advanced ceramics,” Encyclopædia Britannica. Encyclopædia Britannica, inc., 03-Nov-2016.
[21] L. A. Chick, L. R. Pederson, G. D. Maupin, J. L. Bates, L. E. Thomas, and G. J. Exarhos, “Glycine-nitrate combustion synthesis of oxide ceramic powders,” Materials Letters, vol. 10, no. 1–2, pp. 6–12, Sep. 1990, doi: 10.1016/0167-577X(90)90003-5.
[22] S. Nakayama, “LaFeO3 perovskite-type oxide prepared by oxide-mixing, co-precipitation and complex synthesis methods,” Journal of Materials Science, vol. 36, pp. 5643–5648, 2001, doi: https://doi.org/10.1023/A:1012526018348.
[23] A. Zarkov et al., “Synthesis of nanocrystalline gadolinium doped ceria via sol–gel combustion and sol–gel synthesis routes,” Ceramics International, vol. 42, no. 3, pp. 3972–3988, Feb. 2016, doi: 10.1016/j.ceramint.2015.11.066.
[24] X. Dong, Z. Wu, X. Chang, W. Jin, and N. Xu, “One-Step Synthesis and Characterization of La 2 NiO 4+ δ Mixed-Conductive Oxide for Oxygen Permeation,” Ind. Eng. Chem. Res., vol. 46, no. 21, pp. 6910–6915, Oct. 2007, doi: 10.1021/ie061182u.
[25] R. P. O’Hayre, “Fuel cells for electrochemical energy conversion,” EPJ Web Conf., vol. 148, p. 00013, 2017, doi: 10.1051/epjconf/201714800013.
[26] M. E. Orazem and B. Tribollet, Electrochemical impedance spectroscopy. Hoboken, N.J: Wiley, 2008.
[27] M. Al Daroukh, “Oxides of the AMO3 and A2MO4-type: structural stability, electrical conductivity and thermal expansion,” Solid State Ionics, vol. 158, no. 1–2, pp. 141–150, Feb. 2003, doi: 10.1016/S0167-2738(02)00773-7.
[28] D. Lee, Y.-L. Lee, W. T. Hong, M. D. Biegalski, D. Morgan, and Y. Shao-Horn, “Oxygen surface exchange kinetics and stability of (La,Sr) 2 CoO 4±δ /La 1−x Sr x MO 3−δ (M = Co and Fe) hetero-interfaces at intermediate temperatures,” J. Mater. Chem. A, vol. 3, no. 5, pp. 2144–2157, 2015, doi: 10.1039/C4TA05795C.
[29] J. Bassat, “Anisotropic ionic transport properties in La2NiO4+δ single crystals,” Solid State Ionics, vol. 167, no. 3–4, pp. 341–347, Feb. 2004, doi: 10.1016/j.ssi.2003.12.012.
[30] J.-M. Bassat et al., “Anisotropic Oxygen Diffusion Properties in Pr 2 NiO 4+δ and Nd 2 NiO 4+δ Single Crystals,” J. Phys. Chem. C, vol. 117, no. 50, pp. 26466–26472, Dec. 2013, doi: 10.1021/jp409057k.
[31] X.-K. Gu and E. Nikolla, “Design of Ruddlesden–Popper Oxides with Optimal Surface Oxygen Exchange Properties for Oxygen Reduction and Evolution,” ACS Catal., vol. 7, no. 9, pp. 5912–5920, Sep. 2017, doi: 10.1021/acscatal.7b01483.
[32] D. Lee and H. Lee, “Controlling Oxygen Mobility in Ruddlesden–Popper Oxides,” Materials, vol. 10, no. 4, p. 368, Mar. 2017, doi: 10.3390/ma10040368.
[33] Qing Feng Ye, “On the transportation of proton and oxygen ions of RP series, Lan+1Nin(1 x)ConxO3n+1+δδ(n=1~3) and their potential use as the cathode of P-SOFCs.,” National Central University, Taoyuan, Taiwan, 2017.
[34] D. M. Halat et al., “Probing Oxide-Ion Mobility in the Mixed Ionic–Electronic Conductor La 2 NiO 4+δ by Solid-State 17 O MAS NMR Spectroscopy,” Journal of the American Chemical Society, vol. 138, no. 36, pp. 11958–11969, Sep. 2016, doi: 10.1021/jacs.6b07348.
[35] J.-C. Park, D.-K. Kim, S.-H. Byeon, and D. Kim, “XANES study on Ruddlesden-Popper phase, La n+1 Ni n O 3n+1 (n = 1, 2, and ∞),” J Synchrotron Rad, vol. 8, no. 2, pp. 704–706, Mar. 2001, doi: 10.1107/S0909049500015983.
[36] A.F Wells, Structural Inorganic Chemistry, 5th ed. Oxford: Clarendon Press, 1984.
[37] Z. Gong, X. Yin, and L. Hong, “Modification of B-site doping of perovskite Nd2NiO3 oxide by Mg2+ ion,” Solid State Ionics, vol. 198, no. 28–31, pp. 1471–1477, Nov. 2013, doi: 10.1016/j.ssi.2009.09.009.
[38] X. Zhang et al., “Highly enhanced electrochemical property by Mg-doping La 2 Ni 1-x Mg x O 4+δ ( x = 0.0, 0.02, 0.05 and 0.10) cathodes for intermediate-temperature solid oxide fuel cells,” International Journal of Hydrogen Energy, vol. 42, no. 49, pp. 29498–29510, Dec. 2018, doi: 10.1016/j.ijhydene.2017.10.091.
[39] C. T. Rueden et al., “ImageJ2: ImageJ for the next generation of scientific image data,” BMC Bioinformatics, vol. 18, no. 1, p. 529, Dec. 2017, doi: 10.1186/s12859-017-1934-z.
[40] I. Miccoli, F. Edler, H. Pfnür, and C. Tegenkamp, “The 100th anniversary of the four-point probe technique: the role of probe geometries in isotropic and anisotropic systems,” J. Phys.: Condens. Matter, vol. 27, no. 22, p. 223201, Jun. 2015, doi: 10.1088/0953-8984/27/22/223201.
[41] E37 Committee, “Test Method for Linear Thermal Expansion of Solid Materials by Thermomechanical Analysis,” ASTM International.
[42] L. Gan, Z. Qin, Z. Xiaolou, S. Yang, and B. Yunfei, “Structural and electrochemical properties of B-site Mg-doped La0.7Sr0.3MnO3-d perovskite cathodes for intermediate temperature solid oxide fuel cells,” Journal of Alloys and Compounds, vol. 655, pp. 99–105, 2016.
[43] L. Gan, Q. Zhong, X. Zhao, Y. Song, and Y. Bu, “Structural and electrochemical properties of B-site Mg-doped La 0.7 Sr 0.3 MnO 3−δ perovskite cathodes for intermediate temperature solid oxide fuel cells,” Journal of Alloys and Compounds, vol. 655, pp. 99–105, Jan. 2016, doi: 10.1016/j.jallcom.2015.09.136.
[44] R. K. Sharma, M. Burriel, L. Dessemond, J.-M. Bassat, and E. Djurado, “Lan+1NinO3n+1 (n = 2 and 3) phases and composites for solid oxide fuel cell cathodes: Facile synthesis and electrochemical properties,” Journal of Power Sources, vol. 325, pp. 337–345, Sep. 2016, doi: 10.1016/j.jpowsour.2016.06.047.
[45] M. A. Yatoo, Z. Du, H. Zhao, A. Aguadero, and S. J. Skinner, “La2Pr2Ni3O10±δ Ruddlesden-Popper phase as potential intermediate temperature-solid oxide fuel cell cathodes,” Solid State Ionics, vol. 320, pp. 148–151, Jul. 2018, doi: 10.1016/j.ssi.2018.02.043.
[46] E. Boehm, J. Bassat, P. Dordor, F. Mauvy, J. Grenier, and P. Stevens, “Oxygen diffusion and transport properties in non-stoichiometric LnNiO oxides,” Solid State Ionics, vol. 176, no. 37–38, pp. 2717–2725, Nov. 2005, doi: 10.1016/j.ssi.2005.06.033.
[47] S. Chokkha and S. Kuharuangrong, “Effect of Sr Doped La4Ni3O10±δ as a Cathode for IT-SOFC,” AMR, vol. 931–932, pp. 116–121, May 2014, doi: 10.4028/www.scientific.net/AMR.931-932.116.
[48] D. Huang, Q. Xu, F. Zhang, W. Chen, H. Liu, and J. Zhou, “Synthesis and electrical conductivity of La2NiO4+δ derived from a polyaminocarboxylate complex precursor,” Materials Letters, vol. 60, no. 15, pp. 1892–1895, Jul. 2006, doi: 10.1016/j.matlet.2005.12.044.
[49] V. V. Poltavets, K. A. Lokshin, T. Egami, and M. Greenblatt, “The oxygen deficient Ruddlesden–Popper La3Ni2O7−δ (δ=0.65) phase: Structure and properties,” Materials Research Bulletin, vol. 41, no. 5, pp. 955–960, May 2006, doi: 10.1016/j.materresbull.2006.01.028.
[50] Z. A. Feng, F. El Gabaly, X. Ye, Z.-X. Shen, and W. C. Chueh, “Fast vacancy-mediated oxygen ion incorporation across the ceria–gas electrochemical interface,” Nat Commun, vol. 5, no. 1, p. 4374, Sep. 2014, doi: 10.1038/ncomms5374.
[51] Z. Lou et al., “Preparation and electrochemical characterization of Ruddlesden–Popper oxide La4Ni3O10 cathode for IT-SOFCs by sol–gel method,” J Solid State Electrochem, vol. 17, no. 10, pp. 2703–2709, Oct. 2013, doi: 10.1007/s10008-013-2150-z.
[52] N. Hildenbrand, P. Nammensma, D. H. A. Blank, H. J. M. Bouwmeester, and B. A. Boukamp, “Influence of configuration and microstructure on performance of La2NiO4+δ intermediate-temperature solid oxide fuel cells cathodes,” Journal of Power Sources, vol. 238, pp. 442–453, Sep. 2013, doi: 10.1016/j.jpowsour.2013.03.192.
|