博碩士論文 106326008 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:31 、訪客IP:18.119.136.221
姓名 王婷萱(Ting-Hsuan Wang)  查詢紙本館藏   畢業系所 環境工程研究所
論文名稱 能見度劣化期間細懸浮微粒、含碳物質及水溶性無機鹽離子質量濃度之特徵分析-以台中地區為例
(Characteristics of PM, carbonaceous species and water-soluble inorganic ions during episodes of visibility degradation in Taichung)
相關論文
★ 能見度劣化與細及超細懸浮微粒粒徑分佈之關係 -以台中地區為例★ 使用中機車粒狀物量測技術開發與行車型態污染物濃度影響
★ 台中地區能見度與消光係數、質量散光效率及物化特性之關係:硝酸鹽生成對能見度劣化之影響
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   至系統瀏覽論文 (2025-3-17以後開放)
摘要(中) 近幾年政府致力於改善台中地區的空氣品質,而能見度為民眾主要關注空污議題之一。本研究中以懸浮微粒質量濃度與能見度之間的關係為出發點,探討不同時間尺度及不同粒徑之懸浮微粒的質量濃度與成份特性對能見度之影響。研究工作於2017年10月至2019年08月期間在台中東海大學設立移動式監測站,透過 TEOM 與BAM 之自動監測儀器分別進行PM1與PM2.5質量濃度之即時量測,且於採樣過程進行局部加熱或調理。含碳成份之量測則使用七波段碳成份吸光儀與氣膠有機碳元素碳監測儀,水溶性無機離子成份之量測使用在線式氣體與氣膠成份監測儀。
研究結果顯示,台中東海地區整個觀測期間加熱過之 PM1 與 PM2.5 平均值質量濃度分別為 13.4 µg/m3及 24.2 µg/m3 ,環境之 PM1 及 PM2.5 平均值量濃度分別為 18.9 µg/m3 及 28.1 µg/m3,整個觀測期間 PM2.5 質量濃度在 2018 年秋冬季節期間有下降之趨勢,然而 PM1 質量濃度變化幅度相較於 PM2.5 並不顯著。環境情況下與加熱或調理過之 PM 質量濃度有相當之差異,且加熱過後之 PM2.5 與微粒散光係數有較好的相關性。重建之PM2.5質量濃度約占實際質量濃度80%至90%,且重建和量測的PM2.5質量濃度之間發現良好的相關性,說明硫酸鹽、硝酸鹽、元素碳及有機物質之化學成分成份幾乎可以代表量測所得的PM2.5質量濃度。環境與加熱後之 PM1/PM2.5 約為至 62%與 48%, PM1/PM2.5 在加熱後平均比值下降表示 PM1 中含有較多的揮發性物質。
水溶性無機離子(NO3-, SO42-, NH4+)與含碳物質(OC, EC)為PM2.5之主要貢獻成份,季節變化對於成份之影響方面,PM2.5之OC、NO3-及NH4+冬季和春季期間濃度最高,夏季濃度最低,與PM2.5質量濃度有類似之趨勢。在2018年秋季與冬季期間可能受到汽油輕型車輛所產生之污染影響,在夏季期間相較於交通污染來源,可能有較多二次有機物生成,且可能多來自於南風或西北風之污染來源,南風的污染來源多來自於工業區,工業區之污染物可能含有揮發性有機物質,其可作為形成SOC之前驅物。能見度劣化期間,水溶性無機離子約占PM2.5 四到五成,含碳物質約占PM2.5 一到兩成,而且當消光係數高於200 Mm-1時,硝酸鹽之占比有顯著增加,硝酸鹽之生成又會受到臭氧及相對濕度影響,夜晚期間在高相對濕度下,氮氧轉化率 (NOR) 有明顯增加,白天期間當臭氧增加時, NOR 也有顯著增加。
根據以上結果表示,從質量及成份面相來看都有減量,但能見度仍無顯著之改善原因可能為在化學成份及質量濃度上同時影響能見度,且粒徑的變化可能會抵消減量之效益,因此需考慮化學物質在粒徑上的分布。總觀測期間之減量主要可能多為硫酸鹽,然而硝酸鹽對於能見度之影響更為顯著,因此減量及改善策略可能要從硫酸鹽之減量漸進到硝酸鹽之減量控制。
摘要(英) To investigate the effect of PM mass concentration and composition characteristics on visibility at different time scales and particle sizes. PM mass concentration, chemical composition, and meteorological conditions were measured in Tunghai University from October 2017 to August 2019. Tapered element oscillating microbalance (TEOM) and β-attenuation monitor (BAM) were used to measure the after heating and ambient cases of particulate matter in real-time. The carbonaceous species in PM2.5 were measured using a aethalometer (AE33) and the semi-continuous OC-EC field analyzer. Water-soluble inorganic ion components were measured with an online gas and aerosol component monitor.
The results revealed that the average mass concentrations of PM1 and PM2.5 in after heating cases are 13.4 µg/m3 and 24.2 µg/m3, respectively. The average mass concentrations of ambient PM1 and PM2.5 are 18.9 µg/m3 and 28.1 µg/m3, respectively. The mass concentration of PM2.5 has significantly decreased. However, PM1 has a slower decreasing tendency than PM2.5 during the observation period. A strong correlation (R2=0.88) is found between the measured and reconstructed PM2.5 mass concentration with a slope of 0.89, indicating that the total mass of major chemical components in PM2.5 could closely represent the measured PM2.5. Water-soluble inorganic ions (NO3-, SO42-, NH4+) and carbonaceous species (OC, EC) are the main components of PM2.5. The mass concentrations of OC, NO3-, and NH4+ in PM2.5 are higher in winter and spring, and lower in summer. Compared with the sources of traffic pollution during the summer, there may be more secondary organic matter formation, and more likely from the southerly or northwesterly winds. The sources of southerly wind probably come from the industrial zone. Pollutants in industrial zone may contain volatile organic substances, which can be used as precursors to form SOC. When visibility is degrading, the water-soluble inorganic ions account for about 40 to 50% of PM2.5 and carbonaceous species account for about 10 to 20% of PM2.5. Nitrate may increase significantly in low visibility, and ozone and relative humidity may affect the formation of nitrate.
According to the above results, simultaneous changes in chemical composition and mass concentration affect visibility, but the changes in particle size may offset the benefit of reduction. Thus, it is still necessary to consider the chemically resolved aerosol size distributions. In terms of reduction and improvement strategies, it can not only focus on the reduction of sulfate, but still need to strengthen the reduction of nitrate.
關鍵字(中) ★ 能見度
★ 空氣品質
★ 地面監測
★ 細懸浮微粒
關鍵字(英) ★ Visibility
★ Air quality
★ Ground monitoring
★ PM2.5
論文目次 中文摘要 i
ABSTRACT iii
誌謝 v
目錄 vi
圖目錄 viii
表目錄 x
第一章 前言 1
1-1 研究背景 1
1-1-1 台中市環境概況 1
1-1-2 大氣能見度 3
1-2 研究目的 5
第二章 文獻回顧 6
2-1 能見度與氣膠質量濃度 6
2-2 氣膠質量濃度 7
2-2-1 氣象條件 7
2-2-2 化學成份 8
2-2-2-1 含碳物質 8
2-2-2-2 水溶性無機離子 15
2-2-3 粒徑分布 18
第三章 研究方法 20
3-1 實驗監測地點描述 20
3-2 觀測期間 23
3-3 實驗系統 25
3-3-1 移動式監測平台系統設計與架設 25
3-3-2 PM1 & PM2.5切換採樣器 29
3-3-3 儀器原理介紹 30
3-4 數據分析方法 32
3-4-1 數據之品質保證管理 32
3-4-2 定義事件日與乾淨日 33
3-4-3 PM2.5重建質量濃度 34
3-4-4 含碳物質分析方法 35
第四章 結果與討論 37
4-1 總觀測期間變化 37
4-1-1 氣膠質量濃度 37
4-1-2 氣膠化學成份 41
4-2 季節變化 43
4-2-1 氣膠質量濃度 43
4-2-2 含碳物質 47
4-3 能見度之劣化分析 59
4-3-1 氣膠質量濃度 59
4-3-2 含碳物質 65
4-3-3 水溶性無機離子 66
第五章 結論 71
參考文獻 73
口試意見回覆 77
參考文獻 (1). Cao, J., Lee, S., Ho, K., Fung, K., Chow, J. C., & Watson, J. G. (2006). Characterization of roadside fine particulate carbon and its eight fractions in Hong Kong. Aerosol Air Qual. Res, 6(2), 106-122.
(2). Cesari, D., De Benedetto, G., Bonasoni, P., Busetto, M., Dinoi, A., Merico, E., . . . Grasso, F. (2018). Seasonal variability of PM2. 5 and PM10 composition and sources in an urban background site in Southern Italy. Science of the Total Environment, 612, 202-213.
(3). Chan, Y., Simpson, R., Mctainsh, G., Vowles, P., Cohen, D., & Bailey, G. (1999). Source apportionment of visibility degradation problems in Brisbane (Australia) using the multiple linear regression techniques. Atmospheric environment, 33(19), 3237-3250.
(4). Cui, M., Chen, Y., Tian, C., Zhang, F., Yan, C., & Zheng, M. J. S. o. t. T. E. (2016). Chemical composition of PM2. 5 from two tunnels with different vehicular fleet characteristics. 550, 123-132.
(5). Deng, J., Xing, Z., Zhuang, B., & Du, K. (2014). Comparative study on long-term visibility trend and its affecting factors on both sides of the Taiwan Strait. Atmospheric research, 143, 266-278.
(6). Hand, J. L., & Malm, W. C. (2007). Review of the IMPROVE equation for estimating ambient light extinction coefficients: CIRA, Colorado State University.
(7). Huang, X., Liu, Z., Zhang, J., Wen, T., Ji, D., & Wang, Y. J. A. R. (2016). Seasonal variation and secondary formation of size-segregated aerosol water-soluble inorganic ions during pollution episodes in Beijing. 168, 70-79.
(8). Jacob, D. J., & Winner, D. A. J. A. e. (2009). Effect of climate change on air quality. 43(1), 51-63.
(9). Jiménez-Guerrero, P., Montávez, J. P., Gómez-Navarro, J. J., Jerez, S., & Lorente-Plazas, R. J. A. e. (2012). Impacts of climate change on ground level gas-phase pollutants and aerosols in the Iberian Peninsula for the late XXI century. 55, 483-495.
(10). Khan, M. B., Masiol, M., Formenton, G., Di Gilio, A., de Gennaro, G., Agostinelli, C., & Pavoni, B. (2016). Carbonaceous PM2. 5 and secondary organic aerosol across the Veneto region (NE Italy). Science of the Total Environment, 542, 172-181.
(11). Kim, E., & Hopke, P. K. J. J. o. G. R. A. (2004). Improving source identification of fine particles in a rural northeastern US area utilizing temperature‐resolved carbon fractions. 109(D9).
(12). Li, H. Z., Dallmann, T. R., Li, X., Gu, P., & Presto, A. A. (2017). Urban organic aerosol exposure: Spatial variations in composition and source impacts. Environmental science & technology, 52(2), 415-426.
(13). Li, T.-C., Yuan, C.-S., Huang, H.-C., Lee, C.-L., Wu, S.-P., & Tong, C. J. A. e. (2017). Clustered long-range transport routes and potential sources of PM2. 5 and their chemical characteristics around the Taiwan Strait. 148, 152-166.
(14). Lin, J. J. J. A. E. (2002). Characterization of the major chemical species in PM2. 5 in the Kaohsiung City, Taiwan. 36(12), 1911-1920.
(15). Liu, P., Zhao, C., Göbel, T., Hallbauer, E., Nowak, A., Ran, L., . . . Mildenberger, K. (2011). Hygroscopic properties of aerosol particles at high relative humidity and their diurnal variations in the North China Plain. Atmospheric Chemistry and Physics, 11(7), 3479-3494.
(16). Ma, Q., Wu, Y., Zhang, D., Wang, X., Xia, Y., Liu, X., . . . Wang, Y. J. S. o. t. t. e. (2017). Roles of regional transport and heterogeneous reactions in the PM2. 5 increase during winter haze episodes in Beijing. 599, 246-253.
(17). Pio, C., Cerqueira, M., Harrison, R. M., Nunes, T., Mirante, F., Alves, C., . . . Matos, M. J. A. E. (2011). OC/EC ratio observations in Europe: Re-thinking the approach for apportionment between primary and secondary organic carbon. 45(34), 6121-6132.
(18). Putaud, J.-P., Raes, F., Van Dingenen, R., Brüggemann, E., Facchini, M.-C., Decesari, S., . . . Laj, P. J. A. e. (2004). A European aerosol phenomenology—2: chemical characteristics of particulate matter at kerbside, urban, rural and background sites in Europe. 38(16), 2579-2595.
(19). Safai, P., Raju, M., Rao, P., & Pandithurai, G. J. A. e. (2014). Characterization of carbonaceous aerosols over the urban tropical location and a new approach to evaluate their climatic importance. 92, 493-500.
(20). Salameh, D., Detournay, A., Pey, J., Pérez, N., Liguori, F., Saraga, D., . . . Massabò, D. J. A. R. (2015). PM2. 5 chemical composition in five European Mediterranean cities: a 1-year study. 155, 102-117.
(21). Shi, X., Nenes, A., Xiao, Z., Song, S., Yu, H., Shi, G., . . . Russell, A. G. (2019). High-resolution datasets unravel the effects of sources and meteorological conditions on nitrate and its gas-particle partitioning. Environmental science & technology.
(22). Shi, Y., Chen, J., Hu, D., Wang, L., Yang, X., & Wang, X. (2014). Airborne submicron particulate (PM1) pollution in Shanghai, China: Chemical variability, formation/dissociation of associated semi-volatile components and the impacts on visibility. Science of the Total Environment, 473, 199-206.
(23). Szidat, S., Jenk, T. M., Synal, H. A., Kalberer, M., Wacker, L., Hajdas, I., . . . Baltensperger, U. J. J. o. G. R. A. (2006). Contributions of fossil fuel, biomass‐burning, and biogenic emissions to carbonaceous aerosols in Zurich as traced by 14C. 111(D7).
(24). Tan, J., Duan, J., Zhen, N., He, K., & Hao, J. J. A. r. (2016). Chemical characteristics and source of size-fractionated atmospheric particle in haze episode in Beijing. 167, 24-33.
(25). Tan, J., Zhang, L., Zhou, X., Duan, J., Li, Y., Hu, J., & He, K. J. S. o. t. T. E. (2017). Chemical characteristics and source apportionment of PM2. 5 in Lanzhou, China. 601, 1743-1752.
(26). Tao, J., Ho, K.-F., Chen, L., Zhu, L., Han, J., & Xu, Z. (2009). Effect of chemical composition of PM2. 5 on visibility in Guangzhou, China, 2007 spring. Particuology, 7(1), 68-75.
(27). Triantafyllou, A., & Kassomenos, P. J. S. o. t. t. e. (2002). Aspects of atmospheric flow and dispersion of air pollutants in a mountainous basin. 297(1-3), 85-103.
(28). VII, A. T. B., Pabroa, P. C. B., Santos, F. L., Quirit, L. L., Asis, J. L. B., Dy, M. A. K., & Martinez, J. P. G. (2015a). Intercomparison between NIOSH, IMPROVE_A, and EUSAAR_2 protocols: Finding an optimal thermal–optical protocol for Philippines OC/EC samples. Atmospheric Pollution Research, 6(2), 334-342.
(29). VII, A. T. B., Pabroa, P. C. B., Santos, F. L., Quirit, L. L., Asis, J. L. B., Dy, M. A. K., & Martinez, J. P. G. J. A. P. R. (2015b). Intercomparison between NIOSH, IMPROVE_A, and EUSAAR_2 protocols: Finding an optimal thermal–optical protocol for Philippines OC/EC samples. 6(2), 334-342.
(30). Vodička, P., Schwarz, J., Cusack, M., & Ždímal, V. (2015). Detailed comparison of OC/EC aerosol at an urban and a rural Czech background site during summer and winter. Science of the Total Environment, 518, 424-433.
(31). Wang, H., He, Q., Chen, Y., & Kang, Y. (2014). Characterization of black carbon concentrations of haze with different intensities in Shanghai by a three-year field measurement. Atmospheric environment, 99, 536-545.
(32). Wang, H., Qiao, L., Lou, S., Zhou, M., Ding, A., Huang, H., . . . Chen, C. J. J. o. C. P. (2016). Chemical composition of PM2. 5 and meteorological impact among three years in urban Shanghai, China. 112, 1302-1311.
(33). Wang, J., Ogawa, S. J. I. j. o. e. r., & health, p. (2015). Effects of meteorological conditions on PM2. 5 concentrations in Nagasaki, Japan. 12(8), 9089-9101.
(34). Watson, J. G. (2002). Visibility: Science and regulation. Journal of the Air & Waste Management Association, 52(6), 628-713.
(35). Wei, L., Duan, J., Tan, J., Ma, Y., He, K., Wang, S., . . . Zhang, Y. J. S. C. E. S. (2015). Gas-to-particle conversion of atmospheric ammonia and sampling artifacts of ammonium in spring of Beijing. 58(3), 345-355.
(36). Wu, C., & Yu, J. Z. (2016). Determination of primary combustion source organic carbon-to-elemental carbon (OC/EC) ratio using ambient OC and EC measurements: secondary OC-EC correlation minimization method. Atmospheric Chemistry and Physics, 16(8), 5453-5465.
(37). Xia, Y., Tao, J., Zhang, L., Zhang, R., Li, S., Wu, Y., . . . Xiong, Z. (2017). Impact of size distributions of major chemical components in fine particles on light extinction in urban Guangzhou. Science of the Total Environment, 587, 240-247.
(38). Xianyun, L., ZHANG, W., Zhenya, W., Weixiong, Z., Ling, T., & Xibin, Y. J. J. o. E. S. (2009). Chemical composition and size distribution of secondary organic aerosol formed from the photooxidation of isoprene. 21(11), 1525-1531.
(39). Xie, Y., Liu, Z., Wen, T., Huang, X., Liu, J., Tang, G., . . . Hu, B. J. S. o. T. T. E. (2019). Characteristics of chemical composition and seasonal variations of PM2. 5 in Shijiazhuang, China: Impact of primary emissions and secondary formation. 677, 215-229.
(40). Zhang, Q., Quan, J., Tie, X., Li, X., Liu, Q., Gao, Y., & Zhao, D. (2015). Effects of meteorology and secondary particle formation on visibility during heavy haze events in Beijing, China. Science of the Total Environment, 502, 578-584.
(41). Zhao, T., Yang, L., Yan, W., Zhang, J., Lu, W., Yang, Y., . . . Wang, W. (2017). Chemical characteristics of PM1/PM2. 5 and influence on visual range at the summit of Mount Tai, North China. Science of the Total Environment, 575, 458-466.
(42). Zhao, X., Zhang, X., Xu, X., Xu, J., Meng, W., & Pu, W. J. A. E. (2009). Seasonal and diurnal variations of ambient PM2. 5 concentration in urban and rural environments in Beijing. 43(18), 2893-2900.
(43). Zhu, C.-S., Cao, J.-J., Tsai, C.-J., Shen, Z.-X., Han, Y.-M., Liu, S.-X., & Zhao, Z.-Z. J. S. o. t. T. E. (2014). Comparison and implications of PM2. 5 carbon fractions in different environments. 466, 203-209.
(44). Zhuang, B., Wang, T., Liu, J., Li, S., Xie, M., Han, Y., . . . Physics. (2017). The surface aerosol optical properties in the urban area of Nanjing, west Yangtze River Delta, China. 17(2).
指導教授 蕭大智 江康鈺(Ta-Chih Hsiao Kung-Yuh Chiang) 審核日期 2020-3-17
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明