博碩士論文 106326023 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:21 、訪客IP:3.137.189.32
姓名 盧姮君(Heng-Chun Lu)  查詢紙本館藏   畢業系所 環境工程研究所
論文名稱 運用金-錳氧化物/氧化石墨烯-單壁奈米碳管修飾玻璃碳電極及方波陽極析出伏安法分析水中五價砷
(Determination of arsenate in water using a gold-manganese oxide/graphene oxide-single-walled carbon nanotubes modified glassy carbon electrode via square wave anodic stripping voltammetry)
相關論文
★ 偏光板TAC製程節水研究★ 應用碳足跡盤查於節能減碳策略之研究-以某太陽能多晶矽片製造廠為例
★ 不同形態擔體對流動式接觸床 (MBBR)去除氨氮效率之探討★ 以減壓蒸發法回收光阻廢液之可行性探討-以某化學材料製造廠為例
★ 行為安全執行策略探討-以某紡絲事業單位為例★ 以環保溶劑取代甲苯應用於工業用接著劑可行性之研究
★ AO+MBR+RO進行生活污水廠水再生最佳調配比例之研究-以鳳山溪污水處理廠為例★ 二氧化矽與氧化鋁廢水混合混凝處理之研究
★ 利用碳氣凝膠紙電吸附於二氯化銅水溶液現象之探討★ 非接觸式光學監測混凝系統技術之發展
★ 以光學影像連續監測銅廢水化學沉降之技術發展★ 以膠羽影像光訊號分析(FICA)技術監測高嶺土之化學混凝
★ 膠羽影像色譜分析技術 監測混凝程序之開發‒以地表原水為例★ 石門水庫分層取水對於前加氯與混凝成效之影響
★ 石門水庫分層取水對於平鎮淨水廠快濾池堵塞成因分析★ 地表水中氨氮之生物急毒性研究
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   至系統瀏覽論文 (2025-4-1以後開放)
摘要(中) 重金屬砷是一種威脅人類健康的水中污染物,其中無機砷具有高毒性,它包含三價砷和五價砷,若是長期攝入,可能導致末梢組織壞死,以及增加罹患腎臟疾病、皮膚病、癌症等風險。傳統分析技術無法立即反映水質中的砷含量,且操作耗時;然而,近年來電化學技術逐漸受到關注,常被運用於快速偵測水質,其中包含無機砷的分析。目前僅少數文獻針對五價砷進行研究,原因是五價砷為電惰性,利用電化學技術不易直接測得。
本研究開發金-錳氧化物/氧化石墨烯-單壁奈米碳管修飾玻璃碳電極,在最佳的電極製備條件(電鍍電位-0.1 V、電鍍時間30秒)及最佳的操作條件(電解液為pH 2的0.2 M Clark-Lubs緩衝液、沉積電位-0.5 V、沉積時間300秒)下,使用方波陽極析出伏安法測量水中五價砷。而此修飾電極會進行循環伏安法和電化學阻抗圖譜分析。根據研究結果顯示,五價砷的訊號值與濃度之間具有良好的線性關係,偵測極限為0.90 µg L-1,遠低於國內飲用水標準(10 µg L-1)和2021年放流水標準(0.25 mg L-1)。在分析過程中,溶液中的三價砷會先被氧化成五價砷,再於電極表面上還原成金屬砷,原因與電解液中大量的氯離子有關。此外,本研究開發的修飾電極不會受到水中六價鉻及鐵離子的影響,並且能夠運用在自來水及飲用水的測量。因此,此修飾電極在水質監測方面具有良好的潛力。
摘要(英) Arsenic is one of the water contaminants which threats to human health. Total inorganic arsenic comprises arsenite (As(III)) and arsenate (As(V)) which are highly toxic. Long-term ingestion may lead to cancer, gangrene, disease of kidney, skin, etc. Commonly used method for arsenic determination is spectrophotometry which cannot reflect water quality immediately; however, electrochemical techniques have been noticed that can detect inorganic arsenic rapidly. But most of electrochemical techniques only developed for measurement of As(III) because As(V) species are hardly detected which due to its electro-inactive property.
In this research, the gold and manganese oxide/ graphene oxide and single-walled carbon nanotubes modified glassy carbon electrode (Au-MnOx/GO-SWCNTs/GCE) was developed. Under the optimal preparation conditions (30 s electroplating at -0.1 V) and the optimal operation conditions (300 s deposition at -0.5 V), it was used to directly evaluate As(V) in water samples by square wave anodic stripping voltammetry (SWASV). The modified electrodes were performed by cyclic voltammetry and electrochemical impedance spectroscopy. Preconcentration of As(V) to As(0) on the Au-MnOx/GO-SWCNTs/GCE surface was associated with abundant Cl- ions in 0.2 M Clark-Lubs buffer (pH 2). The stripping current was found at -0.1 to 0.2 V which is proportional to the concentration of As(V) in the range from 5 to 100 μg L-1, and the detection limit is 0.90 μg L-1. It is lower than limited values of Drinking Water Quality Standard (10 μg L-1) and Effluent Standard (0.25 mg L-1) in 2021. Repeatability of As(V) for nine times analysis exhibits good with a relative standard deviation (RSD) of 4.59%. The modified electrode developed in this work is free from the interference of Cr(VI) and Fe(III). This modified electrode was successfully applied to the determination of As(V) in tap water and drinking water.
關鍵字(中) ★ 五價砷
★ 砷
★ 金
★ 錳氧化物
★ 氧化石墨烯
★ 單壁奈米碳管
★ 方波陽極析出伏安法
★ 氯離子
關鍵字(英) ★ arsenate
★ arsenic
★ gold
★ manganese oxides
★ graphene oxide
★ single-walled carbon nanotube
★ square wave anodic stripping voltammetry
★ chloride
論文目次 Contents
摘要 i
Abstract ii
誌謝 iv
Contents v
List of Figures ix
List of Tables xii
Chapter 1 Introduction 1
1.1 Background 1
1.2 Objectives 4
Chapter 2 Literature Reviews 6
2.1 Patterns and detection of arsenic 6
2.2 Electrochemical technology 9
2.2.1 Electrochemical reaction and principle 10
2.2.2 Electrochemical impedance spectroscopy (EIS) 12
2.3 Potential scanning methods of voltammetry 17
2.3.1 Linear Sweep Voltammetry (LSV) 17
2.3.2 Cyclic Voltammetry (CV) 20
2.3.3 Differential Pulse Voltammetry (DPV) 24
2.3.4 Square Wave Voltammetry (SWV) 25
2.3.5 Stripping Voltammetry (SV) 27
2.4 Electrode modified materials for As(V) analysis 31
2.4.1 Graphene oxide (GO) 32
2.4.2 Single-walled carbon nanotubes (SWCNTs) 33
2.4.3 Gold nanoparticles (AuNPs) 34
2.4.4 Manganese oxides (MnOx) 35
Chapter 3 Materials and Methods 37
3.1 Instrumentation and Chemicals 37
3.1.1 Instrumentation 37
3.1.2 Materials and Chemicals 38
3.2 Modification of working electrode 40
3.2.1 Pretreatment of SWCNTs 40
3.2.2 Preparation of the modified electrode 40
3.3 Characterization of modified electrodes 41
3.4 Voltammetric analysis 42
3.4.1 Detection of As(V) and As(III) 42
3.4.2 Interference analysis 43
Chapter 4 Results and Discussion 44
4.1 Electrochemical behavior of modified electrodes 44
4.1.1 Electrochemical reaction of working electrodes 44
4.1.2 Kinetics of quasi-reversible reaction 48
4.1.3 Electrochemical impedance spectroscopy (EIS) 52
4.2 Characterization of modified electrodes 54
4.2.1 SEM 54
4.2.2 TEM 56
4.2.3 XPS 58
4.2.4 XRD 63
4.3 Selection of electrolyte and modified electrode 65
4.3.1 Selection of electrolyte 65
4.3.2 Optimal preparation condition of Au-MnOx/GO-SWCNTs/GCE 68
4.3.3 Optimal deposition time of preconcentration step 71
4.4 Square wave voltammetric analysis of As(V) 72
4.4.1 Analytical performance of As(V) on different modified electrode 72
4.4.2 Reversibility of As(V) detection 74
4.4.3 Analytical performance of As(V) 75
4.4.4 Interference measurement of As(V) 78
4.5 Voltammetric analysis of As(III) and total arsenic 80
4.5.1 Analytical performance of As(III) 80
4.5.2 Measuring total arsenic 85
4.6 Real sample analysis 86
4.7 Repeatability 88
Chapter 5 Conclusions and Suggestions 89
5.1 Conclusions 89
5.2 Suggestions 90
Reference 91
Appendix 102
參考文獻 Achterberg, E.P., Barriada, J.L., and Braungardt, C.B.,”Cathodic stripping”, Encyclopedia of Analytical Science, 203-211, (2005).
Ajith, N., Bhattacharyya, K., Ipte, P.R., Satpati, A.K., Tripathi, A.K., Verma, R., and Swain, K.K.,”Interaction of arsenic(III) and arsenic(V) on manganese dioxide: XPS and electrochemical investigations”, Environmental Science and Health, 54, 277-285(2019).
Amine, A., and Mohammadi, H.,”Amperometry”, Reference Module in Chemistry, Molecular Sciences and Chemical Engineering, 1-14, (2018).
Amirnia, S., Asaeda, T., Takeuchi, C., and Kaneko, Y.,”Manganese-mediated immobilization of arsenic by calcifying macro-algae, chara braunii”, Science of the Total Environment, 646, 661-669(2019).
Anderson, J.L., and Sioda, R.E.,”Electro-deposition as a preconcentration step in analysis of multicomponent solutions of metallic ions”, Talanta, 30, 627-629(1983).
Asad, M., Fathipour, M., Sheikhi, M.H., and Pourfath, M.,”High-performance infrared photo-transistor based on SWCNT decorated with PbS nanoparticles”, Sensors and Actuators A: Physical, 220, 213-220(2014).
Asangil, D., Hudai Tasdemir, I., and Kilic, E.,”Adsorptive stripping voltammetric methods for determination of aripiprazole”, Pharmaceutical Analysis, 2, 193-199(2012).
Atchudan, R., Pandurangan, A., and Joo, J.,”Effects of nanofillers on the thermo-mechanical properties and chemical resistivity of epoxy nanocomposites”, Nanoscience and Nanotechnology, 15, 4255-4267(2015).
Bard, A.J., and Faulkner, L.R.,”Electrochemical Methods: Fundamentals and Applications”, John Wiley & Sons Inc, New York(1980).
Ben Issa, N., Rajakovic-Ognjanovic, V.N., Marinkovic, A.D., and Rajakovic, L.V.,”Separation and determination of arsenic species in water by selective exchange and hybrid resins”, Analytica Chimica Acta, 706, 191-198(2011).
Bond, A.M., Compton, R.G., Fiedler, D.A., Inzelt, G., Kahlert, H., Komorsky-Lovric, Š., Lohse, H., Lovri´c, M., Marken, F., Neudeck, A., Retter, U., Scholz, F., and Stojek, Z.,”Electroanalytical Methods: Guide to Experiments and Applications”, Springer, Germany(2010).
Borrill, A.J., Reily, N.E., and Macpherson, J.V.,”Addressing the practicalities of anodic stripping voltammetry for heavy metal detection: a tutorial review”, Royal Society of Chemistry, 144, 6834-6849(2019).
Brookins, D.G.,”Eh-pH Diagrams for Geochemistry”, 176, Springer, Berlin, Heidelberg, New York(1988).
Brown, A.P., and Anson, F.C.,”Cyclic and differential pulse voltammetric behavior of reactants confined to the electrode surface”, Analytical Chemistry, 49, 1589-1595(1977).
Carrera, P., Espinoza-Montero, P.J., Fernandez, L., Romero, H., and Alvarado, J.,”Electrochemical determination of arsenic in natural waters using carbon fiber ultra-microelectrodes modified with gold nanoparticles”, Talanta, 166, 198-206(2017).
Cheng, A., Tyne, R., Kwok, Y.T., Rees, L., Craig, L., Lapinee, C., D’Arcy, M., Weiss, D.J., and Salaün, P.,”Investigating arsenic contents in surface and drinking water by voltammetry and the method of standard additions”, Chemical Education, 93, 1945-1950(2016).
Chowdhury, A.-N., Ferdousi, S., Islam, M.M., Okajima, T., and Ohsaka, T.,”Arsenic detection by nanogold/conducting-polymer-modified glassy carbon electrodes”, Applied Polymer Science, 104, 1306-1311(2007).
Cosio, M.S., Scampicchio, M., and Benedetti, S.,”Electronic noses and tongues”, Chemical Analysis of Food: Techniques and Applications, 219-247, (2012).
Cullen, W.R., and Reimer, K.J.,”Arsenic speciation in the environment”, Chemical Reviews, 89, 713-764(1989).
Dai, X., Nekrassova, O., Hyde, M.E., and Compton, R.G.,”Anodic stripping voltammetry of arsenic(III) using gold nanoparticle-modified electrodes”, Analytical Chemistry, 76, 5924-5929(2004).
Denuault, G., Sosna, M., and Williams, K.-J.,”Classical experiments”, Handbook of Electrochemistry, 431-469, Elsevier, UK(2007).
Devi, P., Bansod, B., Kaur, M., Bagchi, S., and Nayak, M.K.,”Co-electrodeposited rGO/MnO2 nanohybrid for arsenite detection in water by stripping voltammetry”, Sensors and Actuators B: Chemical, 237, 652-659(2016).
Devia, A., Benavides, V., Castillo, H.A., and Quintero, J.,”Effects of the substrate temperature in AuN thin films by means of X-ray diffraction”, AIP Conference Proceedings, 258-261(2006).
Dixit, S., and Hering, J.G.,”Comparison of arsenic(V) and arsenic(III) sorption onto iron oxide minerals: implications for arsenic mobility”, Environmental Science and Technology, 37, 4182-4189(2003).
Dogan-Topal, B., Ozkan, S.A., and Uslu, B.,”The analytical applications of square wave voltammetry on pharmaceutical analysis”, The Open Chemical and Biomedical Methods, 3, 56-73(2010).
Díez, N., Śliwak, A., Gryglewicz, S., Grzyb, B., and Gryglewicz, G.,”Enhanced reduction of graphene oxide by high-pressure hydrothermal treatment”, RSC Advances, 5, 81831-81837(2015).
Eggins, B.R.,”Chemical Sensors and Biosensors”, John Wiley & Sons, England(2008).
Elad, T., Almog, R., Yagur-Kroll, S., Levkov, K., Melamed, S., Shacham-Diamand, Y., and Belkin, S.,”Online monitoring of water toxicity by use of bioluminescent reporter bacterial biochips”, Environmental Science and Technology, 45, 8536-8544(2011).
Estela, J.M., Tomás, C., Cladera, A., and Cerdà, V.,”Potentiometric stripping analysis: a review”, Analytical Chemistry, 25, 91-141(1995).
Fischer, O., and Fischerová, E.,”Basic principles of voltammetry”, Bioelectrochemistry: Principles and Practice, 3, 41-157, (1995).
Fuku, X., Iftikar, F., Hess, E., Iwuoha, E., and Baker, P.,”Cytochrome c biosensor for determination of trace levels of cyanide and arsenic compounds”, Analytica Chimica Acta, 730, 49-59(2012).
Gabelich, C., Gerringer, F., Knocke, W., and Lee, C.,”Sequential manganese desorption and sequestration in anthracite coal and silica sand filter media”, American Water Works Association, 98, 116-127(2006).
Garelick H., and Jones H.,”Mitigating arsenic pollution: Bridging the gap between knowledge and practice”, Angewandte Chemie International Edition, 30, 7-12(2008).
Garg, B., Bisht, T., and Ling, Y.C.,”Graphene-based nanomaterials as heterogeneous acid catalysts: a comprehensive perspective”, Molecules, 19, 14582-14614(2014).
Gibbon-Walsh, K., Salaun, P., and van den Berg, C.M.,”Determination of arsenate in natural pH seawater using a manganese-coated gold microwire electrode”, Analytica Chimica Acta, 710, 50-57(2012).
Gu, T., Bu, L., Huang, Z., Liu, Y., Tang, Z., Liu, Y., Huang, S., Xie, Q., Yao, S., Tu, X., Luo, X., and Luo, S.,”Dual-signal anodic stripping voltammetric determination of trace arsenic(III) at a glassy carbon electrode modified with internal-electrolysis deposited gold nanoparticles”, Electrochemistry Communications, 33, 43-46(2013).
Guan, J., Fang, Y., Zhang, T., Wang, L., Zhu, H., Du, M., and Zhangg, M.,”Kelp-derived activated porous carbon for the detection of heavy metal ions via square wave anodic stripping voltammetry”, Electrocatalysis, (2019).
Gumpu, M.B., Veerapandian, M., Krishnan, U.M., and Rayappan, J.B.B.,”Electrochemical sensing platform for the determination of arsenite and arsenate using electroactive nanocomposite electrode”, Chemical Engineering Journal, 351, 319-327(2018).
Guo, X., Yun, Y., Shanov, V.N., Halsall, H.B., and Heineman, W.R.,”Determination of trace metals by anodic stripping voltammetry using a carbon nanotube tower electrode”, Electroanalysis, 23, 1252-1259(2011).
Gupta, R., Gamare, J.S., Pandey, A.K., Tyagi, D., and Kamat, J.V.,”Highly sensitive detection of arsenite based on its affinity toward ruthenium nanoparticles decorated on glassy carbon electrode”, Analytical Chemistry, 88, 2459-2465(2016).
Gupte, T., Jana, S.K., Mohanty, J.S., Srikrishnarka, P., Mukherjee, S., Ahuja, T., Sudhakar, C., Thomas, T., and Pradeep, T.,”Highly sensitive As3+ detection using electrodeposited nanostructured MnOx and phase evolution of the active material during sensing”, ACS Applied Materials and Interfaces, 11, 28154-28163(2019).
Han, J.T., Kim, J.S., Jo, S.B., Kim, S.H., Kim, J.S., Kang, B., Jeong, H.J., Jeong, S.Y., Lee, G.W., and Cho, K.,”Graphene oxide as a multi-functional p-dopant of transparent single-walled carbon nanotube films for optoelectronic devices”, Nanoscale, 4, 7735-7742(2012).
Hanson, K.M., Pappas, T.J., and Holland, L.A.,”Electrochemical detection in capillary electrophoresis”, Analysis and Detection by Capillary Electrophoresis, 413-440, (2005).
Hayes, P.,”Chemical reaction kinetics”, Treatise on Process Metallurgy, 1, 831-852, (2014).
Hills, G.J., Schiffrin, D.J., and Thompson, J.,”Electrochemical nucleation from molten salts—I. Diffusion controlled electrodeposition of silver from alkali molten nitrates”, Electrochimica Acta, 19, 657-670(1974).
Honeychurch, K.C.,”Printed thick-film biosensors”, Printed Films, 366-409, UK(2012).
Hong, Y.-S., Song, K.-H., and Chung, J.-Y.,”Health effects of chronic arsenic exposure”, General Preventive Medicine and Public Health, 47, 245-252(2014).
Huayhuas-Chipana, B., Morales Gomero, J., and Sotomayor, M.,”Nanostructured screen-printed electrodes modified with self-assembled monolayers for determination of metronidazole in different Matrices”, Journal of the Brazilian Chemical Society, 25, (2014).
Hummers, W.S., and Offeman, R.E.,”Preparation of graphitic oxide”, American Chemical Society, 80, 1339-1339(1958).
Idris, A.O., Mabuba, N., and Arotiba, O.A.,”Electrochemical co-detection of arsenic and selenium on a glassy carbon electrode modified with gold nanoparticles”, International Journal of Electrochemical Science, 10-21(2017).
Kapaj, S., Peterson, H., Liber, K., and Bhattacharya, P.,”Human health effects from chronic arsenic poisoning-a review”, Journal of Environmental Science and Health, 41, 2399-2428(2006).
Killa, H.M., Mercer, E.E., and Philp, R.H.,”Applications of cyclic voltammetry in the characterization of complexes at low ligand concentrations”, Analytical Chemistry, 56, 2401-2405(1984).
Kissinger, P.T., and Heineman, W.R.,”Cyclic voltammetry”, Chemical Education, 60, 702-706(1983).
Komorowicz, I., Hanc, A., Lorenc, W., Baralkiewicz, D., Falandysz, J., and Wang, Y.,”Arsenic speciation in mushrooms using dimensional chromatography coupled to ICP-MS detector”, Chemosphere, 233, 223-233(2019).
Kounaves, S.P.,”Voltammetric techniques”, Handbook of instrumental techniques for analytical chemistry, 709-725, Upper Sanddle River, NJ: Prentice Hall PTR, USA(1997).
Laborda, E., González, J., and Molina, Á.,”Recent advances on the theory of pulse techniques: A mini review”, Electrochemistry Communications, 43, 25-30(2014).
Lamm, S.H., Engel, A., Penn, C.A., Chen, R., and Feinleib, M.,”Arsenic cancer risk confounder in southwest Taiwan data set”, Environmental Health Perspectives, 114, 1077-1082(2006).
Lan, C.C., Yu, H.S., and Ko, Y.C.,”Chronic arsenic exposure and its adverse health effects in Taiwan: a paradigm for management of a global environmental problem”, The Kaohsiung Journal of Medical Sciences, 27, 411-416(2011).
Liu, C.-l., Luo, S.-h., Huang, H.-b., Zhai, Y.-c., and Wang, Z.-w.,”Layered potassium-deficient P2- and P3-type cathode materials KxMnO2 for K-ion batteries”, Chemical Engineering Journal, 356, 53-59(2019a).
Liu, M., Liu, T., Mao, X., Liu, J., Na, X., Ding, L., and Qian, Y.,”A novel gas liquid separator for direct sampling analysis of ultratrace arsenic in blood sample by hydride generation in-situ dielectric barrier discharge atomic fluorescence spectrometry”, Talanta, 202, 178-185(2019b).
Liu, Z.-B., Zhao, X., Zhang, X.-L., Yan, X.-Q., Wu, Y.-P., Chen, Y.-S., and Tian, J.-G.,”Ultrafast dynamics and nonlinear optical responses from sp2- and sp3-Hybridized domains in graphene oxide”, The Journal of Physical Chemistry Letters, 2, 1972-1977(2011).
Luong, J.H.T., Lam, E., and Male, K.B.,”Recent advances in electrochemical detection of arsenic in drinking and ground waters”, Analytical Methods, 6, 6157-6169(2014).
Manzetti, S., and Gabriel, J.-C.P.,”Methods for dispersing carbon nanotubes for nanotechnology applications: liquid nanocrystals, suspensions, polyelectrolytes, colloids and organization control”, International Nano Letters, 9, 31-49(2019).
Marcus, R.A.,”On the theory of oxidation-reduction reactions involving electron transfer”, The Journal of Chemical Physics, 24, 966-978(1956).
Mavrič, T., Benčina, M., Imani, R., Junkar, I., Valant, M., Kralj-Iglič, V., and Iglič, A.,”Electrochemical biosensor based on TiO2 nanomaterials for cancer diagnostics”, Advances in Biomembranes and Lipid Self-Assembly, 27, 63-105, Academic Press, Slovenia(2018).
Meites, L.,”Polarographic characteristics of +3 and +5 arsenic in hydrochloric acid solutions”, Journal of The American Chemical Society, 76, 5927-5931(1954).
Miralles, C., and Gómez, R.,”Proving insertion of Mg in Mn2O3 electrodes through a spectroelectrochemical study”, Electrochemistry Communications, 106, (2019).
Mirceski, V., Skrzypek, S., and Stojanov, L.,”Square-wave voltammetry”, ChemTexts, 4, 1-14(2018).
Mlddelburg, J.J., Hoede, D., Sloot, H.A.V.D., Weijden, C.H.V.D., and Wijkstra, J.,”Arsenic, antimony and vanadium in the North Atlantic Ocean”, Geochimica et Cosmochimica Acta, 52, 2871-2878(1988).
Moran, K.L.M., Fitzgerald, J., McPartlin, D.A., Loftus, J.H., and O′Kennedy, R.,”Biosensor-based technologies for the detection of pathogens and toxins”, Comprehensive Analytical Chemistry, 74, 93-120, Elsevier, Ireland(2016).
Nadjo, L., and Savéant, J.M.,”Linear sweep voltammetry: kinetic control by charge transfer and/or secondary chemical reactions”, Electroanalytical Chemistry and Interfacial Electrochemistry, 48, 113-145(1973).
Neto, A.J.P., and Fileti, E.E.,”Elucidating the amphiphilic character of graphene oxide”, Physical Chemistry Chemical Physics, 20, 9507-9515(2018).
Radnik, J.r., Mohr, C., and Claus, P.,”On the origin of binding energy shifts of core levels of supported gold nanoparticles and dependence of pretreatment and material synthesis”, Physical Chemistry Chemical Physics, 5, 172-177(2003).
Raidongia, K., Tan, A.T.L., and Huang, J.,”Graphene oxide: some new insights into an old material”, Carbon Nanotubes and Graphene, 341-374, (2014).
Rajagopal, R., and Ryu, K.-S.,”Synthesis of MnO2 nanostructures with MnS-deposits for high performance supercapacitor electrodes”, New Journal of Chemistry, 43, 12987-13000(2019).
Rajkumar, M., Thiagarajan, S., and Chen, S.-M.,”Electrochemical detection of arsenic in various water samples”, International Journal of Electrochemical Science, 6, 3164-3177(2011).
Ramaley, L., and Krause, M.S.,”Theory of square wave voltammetry”, Analytical Chemistry, 41, 1362-1365(1969).
Redman, A.D., Macalady, D.L., and Ahmann, D.,”Natural organic matter affects arsenic speciation and sorption onto hematite”, Environmental Science & Technology, 36, 2889-2896(2002).
Ren, X., Song, Y., Liu, A., Zhang, J., Yang, P., Zhang, J., and An, M.,”Experimental and theoretical studies of DMH as a complexing agent for a cyanide-free gold electroplating electrolyte”, RSC Advances, 5, 64997-65004(2015).
Retter, U., and Lohse, H.,”Electrochemical impedance spectroscopy”, Electroanalytical Methods, 159-177, Springer-Verlag, Germany(2010).
Ross, J.W., DeMars, R.D., and Shain, I.,”Analytical applications of hanging mercury drop electrode”, Analytical Chemistry, 28, 1768-1771(1965).
Roy, E., Patra, S., Madhuri, R., and Sharma, P.K.,”Europium doped magnetic graphene oxide-MWCNT nanohybrid for estimation and removal of arsenate and arsenite from real water samples”, Chemical Engineering Journal, 299, 244-254(2016).
Saleh, T.A.,”The role of carbon nanotubes in enhancement of photocatalysis”, Syntheses and Applications of Carbon Nanotubes and Their Composites, (2013).
Sandford, C., Edwards, M.A., Klunder, K.J., Hickey, D.P., Li, M., Barman, K., Sigman, M.S., White, H.S., and Minteer, S.D.,”A synthetic chemist′s guide to electroanalytical tools for studying reaction mechanisms”, Chemical Science, 10, 6404-6422(2019).
Sanghavi, B.J., Gadhari, N.S., Kalambate, P.K., Karna, S.P., and Srivastava, A.K.,”Potentiometric stripping analysis of arsenic using a graphene paste electrode modified with a thiacrown ether and gold nanoparticles”, Microchimica Acta, 182, 1473-1481(2015).
Sankar, M., He, Q., Morad, M., Pritchard, J., Freakley, S.J., Edwards, J.K., Taylor, S.H., Morgan, D.J., Carley, A.F., Knight, D.W., Kiely, C.J., and Hutchings, G.J.,”Synthesis of stable ligand-free gold-palladium nanoparticles using a simple excess anion method”, ACS Nano, 6, 6600-6613(2012).
Scott, K.,”Electrochemical principles and characterization of bioelectrochemical systems”, Microbial Electrochemical and Fuel Cells, 29-66, (2016).
Shaik, D.P.M.D., Rosaiah, P., and Hussain, O.M.,”Supercapacitive properties of Mn3O4 nanoparticles synthesized by hydrothermal method”, Materials Today: Proceedings, 3, 64-73(2016).
Shao, W., Burkert, S.C., White, D.L., Scott, V.L., Ding, J., Li, Z., Ouyang, J., Lapointe, F., Malenfant, P.R.L., Islam, K., and Star, A.,”Probing Ca2+-induced conformational change of calmodulin with gold nanoparticle-decorated single-walled carbon nanotube field-effect transistors”, Nanoscale, 11, 13397-13406(2019).
Sivasothy, T., Ndifor-Angwafor, N.G., and Marken, F.,”Voltammetric characteristics of hydrous Fe(III) oxide embedded into Nafion and immobilised onto a screen-printed carbon electrode: binding of arsenate versus phosphate”, Journal of Solid State Electrochemistry, 22, 3059-3067(2018).
Smedley, P.L., and Kinniburgh, D.G.,”A review of the source, behaviour and distribution of arsenic in natural waters”, Applied Geochemistry, 17, 517-568(2002).
Smith, T.J., and Stevenson, K.J.,”Reference electrodes”, Handbook of Electrochemistry, 73-110, USA(2007).
Song, Y., and Swain, G.M.,”Development of a method for total inorganic arsenic analysis using anodic stripping voltammetry and a Au-coated, diamond thin-film electrode”, Analytical Chemistry, 79, 2412-2420(2007).
Stojek, Z.,”Pulse voltammetry”, Electroanalytical Methods: Guide to Experiments and Applications, 107-119, Springer, Germany(2010).
Sun, M., Lan, B., Lin, T., Cheng, G., Ye, F., Yu, L., Cheng, X., and Zheng, X.,”Controlled synthesis of nanostructured manganese oxide: crystalline evolution and catalytic activities”, CrystEngComm, 15, (2013).
Sun, Y., and Xia, Y.,”Shape-controlled synthesis of gold and silver nanoparticles”, Science, 298, 2176-2179(2002).
Svancara, I., Vytras, K., Bobrowski, A., and Kalcher, K.,”Determination of arsenic at a gold-plated carbon paste electrode using constant current stripping analysis”, Talanta, 58, 45-55(2002).
Vandenhecke, J., Waeles, M., Cabon, J.-Y., Garnier, C., and Riso, R.D.,”Inorganic arsenic speciation in the waters of the Penzé estuary (NW France): Seasonal variations and fluxes to the coastal area”, Estuarine, Coastal and Shelf Science, 90, 221-230(2010).
Wang, B., Li, X., Luo, B., Hao, L., Zhou, M., Zhang, X., Fan, Z., and Zhi, L.,”Approaching the downsizing limit of silicon for surface-controlled lithium storage”, Advanced Materials, 27, 1526-1532(2015).
Wang, J.,”Analytical Electrochemistry”, John Wiley & Sons, Inc., USA(2006).
WHO, ”Guidelines for Drinking-water Quality”, 315-318(2011).
Wu, S., Zhao, Q., Zhou, L., and Zhang, Z.,”Stripping analysis of trace arsenic based on the MnOx/AuNPs composite film modified electrode in alkaline media”, Electroanalysis, 26, 1840-1849(2014).
Xiao, L., Wildgoose, G.G., and Compton, R.G.,”Sensitive electrochemical detection of arsenic (III) using gold nanoparticle modified carbon nanotubes via anodic stripping voltammetry”, Analytica Chimica Acta, 620, 44-49(2008).
Yang, M., Chen, X., Jiang, T.J., Guo, Z., Liu, J.H., and Huang, X.J.,”Electrochemical detection of trace arsenic(III) by nanocomposite of nanorod-like alpha-MnO2 decorated with approximately 5 nm Au nanoparticles: Considering the change of arsenic speciation”, Analytical Chemistry, 88, 9720-9728(2016).
Yao, Y., Zhang, L., Xu, J., Wang, X., Duan, X., and Wen, Y.,”Rapid and sensitive stripping voltammetric analysis of methyl parathion in vegetable samples at carboxylic acid-functionalized SWCNTs–β-cyclodextrin modified electrode”, Journal of Electroanalytical Chemistry, 713, 1-8(2014).
Zakharova, E.A., Noskova, G.N., Antonova, S.G., and Kabakaev, A.S.,”Speciation of arsenic(III) and arsenic(V) by manganese-mediated stripping voltammetry at gold microelectrode ensemble in neutral and basic medium”, International Journal of Environmental Analytical Chemistry, 94, 1478-1498(2014).
Zhang, X.-F., and Shao, X.,”π–π binding ability of different carbon nano-materials with aromatic phthalocyanine molecules: Comparison between graphene, graphene oxide and carbon nanotubes”, Journal of Photochemistry and Photobiology A: Chemistry, 278, 69-74(2014).
Zhou, C., Yang, M., Li, S.-S., Jiang, T.-J., Liu, J.-H., Huang, X.-J., and Chen, X.,”Electrochemically etched gold wire microelectrode for the determination of inorganic arsenic”, Electrochimica Acta, 231, 238-246(2017).
林蓁君,「運用金-錳氧化物/單壁奈米碳管修飾電極進行三價砷之伏安法分析」, 碩士論文, 國立中央大學環境工程研究所, 桃園(2018).
胡啟章.”電化學原理與方法”, 五南圖書出版股份有限公司, 台北(2011).
張佳琦,「運用氧化石墨烯/單壁奈米碳管/碲化鉍修飾玻璃碳電極進行水中鎘之方波陽極析出伏安法分析」, 碩士論文, 國立中央大學環境工程研究所, 桃園(2019).
張雅雯,「運用金奈米粒子/單壁奈米碳管複合材料修飾電極進行砷(ІІІ)之伏安法分析」, 碩士論文, 國立中央大學環境工程研究所, 桃園(2015).
盧怡君,「以去官能基化二氧化鈦/單壁奈米碳管複合材料修飾玻璃碳電極進行COD之伏安法分析」, 碩士論文, 國立中央大學環境工程研究所, 桃園(2015).
環保署, ”放流水標準修正總說明及條文對照表”, (2017a).
環保署, ”飲用水水質標準”, (2017b).
指導教授 秦靜如(Ching-Ju Chin) 審核日期 2020-4-7
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明