博碩士論文 108322097 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:178 、訪客IP:3.148.105.131
姓名 黃奕語(Yi-Yu Huang)  查詢紙本館藏   畢業系所 土木工程學系
論文名稱 不同時空降雨型態對於地下水補注量之探討—以屏東平原為例
相關論文
★ 結合資料探勘方法建立屏東平原含水層水文地質參數推估模式★ 探討颱風特性於農損及坡地災害遙測影像辨識之研究
★ 以訊號分析資料探勘方法探討PM2.5污染傳播時空特徵及相應之天氣條件★ 運用訊號分析方法於地下水資源旱災韌性與風險評估
★ 探討都市熱島效應對臺北地區午後雷雨及地下水之影響★ 水文地質條件不確定性下的地下水時空變化模擬
★ 建立台灣北部交通與氣象因子對於空氣污染影響之機器學習模型★ 以深度學習方法建立地下水位預警之風險評估模型
★ 以機器學習預測海溫及熱帶氣旋特徵對於珊瑚白化之影響 – 以澎湖南方四島為例★ 以系統動態與貝氏網路探討地表水與地下水的聯合管理策略
★ 探討臺灣地震活動特徵與環境變數相關性分析★ 以機器學習方法建立巨觀尺度降雨氣候水資源推估模式
★ 探討強風是否為崩塌致災因子與建立崩塌機器學習模型★ 以小波分析技術建立創新乾旱時空分佈指標與氣候變遷乾旱風險分析
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 在全球尺度的氣候變遷影響之下,臺灣的降雨型態在時間與空間的分布上愈加集中、不均。近幾年,旱災、極端強降雨事件頻傳,對於臺灣一直以來面臨的缺水問題更是雪上加霜。地下水一直以來為穩定的水資源來源之一,如何妥善利用地下水一直是我們面臨水資源短缺一個非常重要的課題。我們必須先了解地下水的補注情況,再加以評估如何維持此資源以達永續平衡。
本研究(以屏東平原為例)以水文大數據分析之資料探勘方式,從往年的歷史觀測資料去了解研究區之降雨行為;首先以經驗正交函數分析將降雨之時空特徵,再建立並歸納出不同型態的降雨事件對於地下水補注的影響評估。最終結果顯示,長延時強降雨的補注效果最佳、其次依序為長延時弱降雨、短延時弱降雨、短延時強降雨;另外以地下水補注成效之空間分布而言,屏東平原之沖積扇扇頂對降雨補注最為敏感。希望藉由此研究對降雨以及其對地下水補注行為有更深了解,達到水資源永續利用、防範洪旱災害等目標。
摘要(英) Under the influence of the global climate change, the rainfalls in Taiwan become more concentrated and uneven whether in temporal or spatial pattern. In recent years, droughts and extreme heavy rainfall events have frequently happened, and it makes the water shortage problem that Taiwan has always faced even worse. Groundwater is one of stable water resources, and how to properly use groundwater is an important issue when we are facing the shortage of water resources. We should realize the recharge behavior first, then assess or find the way for conservation and sustainable development.
 This study (takes Pingtung plain for example) uses hydrological big data from historical observation data in the past years. First, we pick up rainfall events, and apply Empirical Orthogonal Function (EOF) to extract the spatial and temporal characteristics of rainfalls, then classify the events into four types (base on the intensity and duration). We can determine the relationship between the rainfall characteristics and groundwater recharge.
The results show that the long-duration and high-intensity rainfalls have the best performance on groundwater recharge; and the top of alluvial fan in Pingtung Plain is most sensitive to rainfall replenishment. Hope this study can reveal a deeper understanding of rainfall and its behavior of groundwater recharge.
關鍵字(中) ★ 時空特徵
★ 降雨型態
★ 地下水補注
★ 經驗正交函數
關鍵字(英)
論文目次 摘 要 i
Abstract ii
誌 謝 iii
目 錄 iv
圖 目 錄 viii
表 目 錄 xii
第1章 緒論 1
1-1 研究背景與動機 1
1-2 研究目的 9
1-3 研究流程 11
1-4 論文結構 12
第2章 文獻回顧 14
2-1 地下水資源 14
2-2 屏東平原相關研究回顧 16
2-3 經驗正交函數之應用 20
2-4 動態因子分析法之應用 23
2-5 降雨事件及雨型之研究 25
第3章 研究方法 27
3-1 研究架構 27
3-2 研究區域概述 29
3-2-1 區域地理環境概述 32
3-2-2 區域水文地質架構概述 35
3-3 資料蒐集 39
3-4 萃取降雨事件之標準及分類 45
3-5 經驗正交函數(EOF) 47
3-6 動態因子分析(DFA) 50
3-7 地下水補注量評估方法 53
3-7-1 地下水補注 (移動平均、一階差分) 53
3-7-2 地下水補注貢獻率 58
3-8 降雨及地下水補注之空間推估—徑向基函數內插法 59
第4章 結果與討論 63
4-1 降雨事件及雨型分類結果 63
4-1-1 降雨事件及雨型分類 63
4-1-2 針對颱風之雨型分類 65
4-2 主要地下水補注特性之綜合分析結果 70
4-2-1 一般降雨事件及其主要補注地區 71
4-2-2 受颱風影響降雨事件及其補注 81
4-3 降雨事件與地下水補注行為 88
4-3-1 降雨事件之平均補注高度以及補注貢獻率 88
4-3-2 不同雨型的降雨事件之平均補注量以及補注斜率 93
4-4 降雨延時、強度及地下水補注之關係(以旗山為例) 94
第5章 結論與建議 99
5-1 結論 99
5-2 建議 100
參考文獻 102
評審意見回覆表 105
參考文獻 Abdi, H., & Williams, L. J. J. W. i. r. c. s. (2010). Principal component analysis. 2(4), 433-459.
Awaka, J. (1998). Early results on rain type classification by the Tropical Rainfall Measuring Mission (TRMM) precipitation radar. Paper presented at the Proc. URSI-F Open Symp. on Wave Propagation and Remote Sensing, Aveiro, Portugal, 1998.
Awaka, J., Iguchi, T., Kumagai, H., & Okamoto, K. i. (1997). Rain type classification algorithm for TRMM precipitation radar. Paper presented at the IGARSS′97. 1997 IEEE International Geoscience and Remote Sensing Symposium Proceedings. Remote Sensing-A Scientific Vision for Sustainable Development.
Chen, C.-H., Wang, C.-H., Hsu, Y.-J., Yu, S.-B., & Kuo, L.-C. J. E. G. (2010). Correlation between groundwater level and altitude variations in land subsidence area of the Choshuichi Alluvial Fan, Taiwan. 115(1-2), 122-131.
Chen, Z., Grasby, S. E., & Osadetz, K. G. J. J. o. H. (2002). Predicting average annual groundwater levels from climatic variables: an empirical model. 260(1-4), 102-117.
Cheng, X., & Dunkerton, T. J. J. J. o. C. (1995). Orthogonal rotation of spatial patterns derived from singular value decomposition analysis. 8(11), 2631-2643.
Dhawan, B. J. N. D. (1995). Groundwater depletion, land degradation, and irrigated agriculture in India.
Du Toit, W. (2008). Radial basis function interpolation. Stellenbosch: Stellenbosch University,
Eckhardt, K., & Ulbrich, U. J. J. o. H. (2003). Potential impacts of climate change on groundwater recharge and streamflow in a central European low mountain range. 284(1-4), 244-252.
Foster, S., & Chilton, P. J. P. T. o. t. R. S. o. L. S. B. B. S. (2003). Groundwater: the processes and global significance of aquifer degradation. 358(1440), 1957-1972.
Fu, Y., Liu, G. J. J. o. A. M., & Climatology. (2007). Possible misidentification of rain type by TRMM PR over Tibetan Plateau. 46(5), 667-672.
Goswami, B. N., Venugopal, V., Sengupta, D., Madhusoodanan, M., & Xavier, P. K. J. S. (2006). Increasing trend of extreme rain events over India in a warming environment. 314(5804), 1442-1445.
Guhathakurta, P., Sreejith, O., & Menon, P. J. J. o. e. s. s. (2011). Impact of climate change on extreme rainfall events and flood risk in India. 120(3), 359.
Horton, R. E. J. E., Transactions American Geophysical Union. (1933). The role of infiltration in the hydrologic cycle. 14(1), 446-460.
Hsu, K.-C., Wang, C.-H., Chen, K.-C., Chen, C.-T., & Ma, K.-W. J. H. J. (2007). Climate-induced hydrological impacts on the groundwater system of the Pingtung Plain, Taiwan. 15(5), 903-913.
Liu, C.-W., Lin, W.-S., Shang, C., & Liu, S.-H. J. E. G. (2001). The effect of clay dehydration on land subsidence in the Yun-Lin coastal area, Taiwan. 40(4-5), 518-527.
Lyons, S. W. J. J. o. A. M. (1982). Empirical orthogonal function analysis of Hawaiian rainfall. 21(11), 1713-1729.
Molenaar, P. C. J. P. (1985). A dynamic factor model for the analysis of multivariate time series. 50(2), 181-202.
Muñoz-Carpena, R., Ritter, A., & Li, Y. J. J. o. C. H. (2005). Dynamic factor analysis of groundwater quality trends in an agricultural area adjacent to Everglades National Park. 80(1-2), 49-70.
Peñarrocha, D., Estrela, M. J., & Millán, M. J. I. J. o. C. A. J. o. t. R. M. S. (2002). Classification of daily rainfall patterns in a Mediterranean area with extreme intensity levels: the Valencia region. 22(6), 677-695.
Pearson, K. J. T. L., Edinburgh,, Magazine, D. P., & Science, J. o. (1901). LIII. On lines and planes of closest fit to systems of points in space. 2(11), 559-572.
Rao, A., & Hsieh, C. J. W. r. m. (1991). Empirical orthogonal function analysis of rainfall and runoff series. 4(4), 235-250.
Shifren, K., Hooker, K., Wood, P., Nesselroade, J. R. J. P., & aging. (1997). Structure and variation of mood in individuals with Parkinson′s disease: A dynamic factor analysis. 12(2), 328.
Shiklomanov, I. A., & Rodda, J. C. (2004). World water resources at the beginning of the twenty-first century: Cambridge University Press.
Stec, A., Słyś, D. J. E. C., & S, E. (2013). Effect of development of the town of Przemysl on operation of its sewerage system. 20(2), 381-396.
Trenberth, K. E. J. C. c. (1998). Atmospheric moisture residence times and cycling: Implications for rainfall rates and climate change. 39(4), 667-694.
Wada, Y., Van Beek, L. P., Van Kempen, C. M., Reckman, J. W., Vasak, S., & Bierkens, M. F. J. G. r. l. (2010). Global depletion of groundwater resources. 37(20).
Water, U. (2018). 2018 UN World Water Development Report, Nature-based Solutions for Water.
Weare, B. C., Navato, A. R., & Newell, R. E. J. J. o. P. O. (1976). Empirical orthogonal analysis of Pacific sea surface temperatures. 6(5), 671-678.
Wold, S., Esbensen, K., Geladi, P. J. C., & systems, i. l. (1987). Principal component analysis. 2(1-3), 37-52.
Yu, H.-L., Chen, B.-L., Chiu, C.-H., Lu, M.-M., Tung, C.-p. J. S. e. r., & assessment, r. (2015). Analysis of space–time patterns of rainfall events during 1996–2008 in Yilan County (Taiwan). 29(3), 929-945.
Zektser, I. S., & Everett, L. G. (2000). Groundwater and the environment: applications for the global community: CRC Press.
Zektser, S., Loáiciga, H. A., & Wolf, J. J. E. G. (2005). Environmental impacts of groundwater overdraft: selected case studies in the southwestern United States. 47(3), 396-404.
Zuur, A., & Pierce, G. J. J. J. o. S. R. (2004). Common trends in northeast Atlantic squid time series. 52(1), 57-72.
Zuur, A., Tuck, I., Bailey, N. J. C. j. o. f., & sciences, a. (2003). Dynamic factor analysis to estimate common trends in fisheries time series. 60(5), 542-552.
Zuur, A. F., Fryer, R., Jolliffe, I., Dekker, R., & Beukema, J. J. E. T. o. j. o. t. I. E. S. (2003). Estimating common trends in multivariate time series using dynamic factor analysis. 14(7), 665-685.
水利署水文組. (2016). 屏東平原水文特徵分析與耦合地表地下水數值模擬應用. 水利署電子報, 第0189期.
朱容練, 朱吟晨, 林士堯, 劉俊志, & 陳永明. (2015). 2014-2015 年乾旱事件概述 災害防救電子報.
朱容練, 黃柏誠, 吳宜昭, 陳淡容, 林欣弘, 林冠伶, & 于宜強. (2018). 2018年台灣乾旱事件分析 國家災害防救科技中心.
吳瑞賢. (2012). 工程水文學[第二版].
徐年盛, 江崇榮, 汪中和, 劉振宇, 劉宏仁, & 中國土木水利工程學刊, 黃. J. (2011). 地下水系統水平衡分析與補注源水量推估之研究. 23(4), 247-257.
張志新, 王俞婷, 傅鏸漩, 林又青, 張駿暉, 劉哲欣, . . . 蘇元風. (2015). 2015 年蘇迪勒颱風災害調查彙整報告. 國家災害防救科技中心.
經濟部中央地質調查所. (2012). 臺灣地區地下水區水文地質調查及地下水資源評估地下水補注潛勢評估與地下水模式建置.
經濟部中央地質調查所. (2014). 地下水補注地質敏感區劃定計畫書.
經濟部水利署. (2017). 臺灣地區地下水觀測網整體計畫成果彙編(81~105).
經濟部水利署. (2018). 2017台灣水文年報.
鄭克聲. (2001). 水文設計應用手冊
指導教授 林遠見(Yuan-Chien Lin) 審核日期 2020-7-20
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明