博碩士論文 107322601 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:82 、訪客IP:3.15.146.43
姓名 葛瑞伯(Gaurab Singh Thapa)  查詢紙本館藏   畢業系所 土木工程學系
論文名稱
(A Model for Anisotropic Shear Strength of Rock Joints)
相關論文
★ 花蓮溪安山岩含量之悲極效應研究★ 層狀岩盤之承載力
★ 海岸山脈安山岩之鹼-骨材反應特性及抑制方法★ 集集大地震罹難者居住建築物特性調查分析
★ 岩石三軸室應變量測改進★ 傾斜互層地層之承載力分析
★ 花蓮溪安山岩骨材之鹼反應行為及抑制方法★ 混成岩模型試體製作與體積比量測
★ 台灣骨材鹼反應潛能資料庫建置★ 平台式掃描器在影像擷取及長度量測之應用
★ 溫度及鹽水濃度對壓實膨潤土回脹性質之影響★ 鹼骨材反應引致之破裂行為
★ 巨觀等向性混成岩製作表面影像與力學性質★ 膨潤土與花崗岩碎石混合材料之熱傳導係數
★ 邊坡上基礎承載力之數值分析★ 鹼-骨材反應引致裂縫之量測與分析
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 本文以法向荷重為定值(CNL)的條件下,研究岩石節理異向性剪力行為。由於Barton剪力強度公式以及 Tse和Cruden的公式皆無法考慮岩石節理異向性剪力強度,因此提出新的公式解決此問題。
τ=σ_n tan⁡〖[ϕ_b+13.41*Z_2*log10⁡(JCS/σ_n ) ]+C_b* C_AR 〗
由於粗糙節理在不同方向具有異向性,因此本研究使用 Z_2(一階倒數的均方根)求粗糙節理係數 (JRC) 與最大剪力強度 (τ),粗糙度參數包含剪力方向 (β°),波長 (λ),振幅 (A) 和循環數量 (N), Z_2愈大代表粗糙度愈主導。
Z_2=√(1/2πN ∫_(x=0)^(x=2πN)▒(dy/dx)^2 )=√((A^2 sin⁡(β) (8Nπ^2 sin⁡(β)+λ sin⁡((8Nπ^2 sin⁡(β))/λ) ))/(Nλ^2 ))/2
  本研究使用三種驗證模式對提出的模型進行適當的論證:(1)透過顆粒流軟體PFC^3D (Particle Flow Code^3D)生成不同振幅 (2mm,3mm,4mm) 與波長 (9mm,12.86mm,18mm和30mm)的正弦曲線的粗糙節理,在不同的剪力方向進行驗證; (2)用PFC^3D模擬不同傾角的三角形節理來驗證此模型; (3)使用Zhang(2019)的實驗數據對提出的模型進行了驗證。
結果顯示不同的驗證結果皆與此模型高度吻合,由於剪力方向的粗糙度發生變化,岩石節理的剪力強度 (τ) 本質上異向性的。
摘要(英) In this study, an anisotropic shear behavior of rock joints is investigated under constant normal load condition (CNL). Barton’s shear strength formula together with Tse and Cruden’s equation cannot take into account the anisotropic shear strength of rock joints. This study proposed a new equation taking in account anisotropic shear behavior of rocks joints.
τ=σ_n tan⁡〖[ϕ_b+13.41*Z_2*log10⁡(JCS/σ_n ) ]+C_b* C_AR 〗
Because of anisotropic characteristics of joint roughness in different direction, roughness parameter Z2 (root mean square of the first derivative) is derived based on sinusoidal profile parameters and is used to find Joint roughness coefficient (JRC) and peak shear strength (τ). The parameters of roughness under consideration are shearing direction (β⁰), Wavelength (λ), Amplitude (A) and Number of cycle (N). A bigger value for this parameter (Z2) means a roughness is more dominant.
Z_2=√(1/2πN ∫_(x=0)^(x=2πN)▒(dy/dx)^2 )=√((A^2 sin⁡(β) (8Nπ^2 sin⁡(β)+λ sin⁡((8Nπ^2 sin⁡(β))/λ) ))/(Nλ^2 ))/2
Different modes of validation were used for suitable justification of the proposed models. PFC3D numerical simulation on sinusoidal profile with different amplitudes (2mm, 3mm and 4mm), wavelengths (9mm, 12.86mm, 18mm and 30mm) and normal stresses at different shearing direction (β⁰) is performed for the validation. In addition, the proposed model is validated with PFC3D numerical simulation results of triangular joints profile with different inclination angle. Furthermore, proposed model is also validated with the experimental data of Zhang, 2019. Except few combinations, good agreement is found between the results from proposed model and results from different modes of validation. It is found that shear strength of rock joint is anisotropic in nature due to roughness variation in shearing direction.
關鍵字(中) ★ 異向性剪力強度
★ 粗糙節理
★ 岩石節理
★ 裂隙
★ 直剪試驗
★ PFC
關鍵字(英) ★ Anisotropic shear strength
★ Joint roughness
★ Rock joint
★ Fracture
★ Direct shear test
★ PFC
論文目次 摘要 i
ABSTRACT ii
Acknowledgements iii
Table of Contents iv
List of Figures vi
List of Tables xi
Abbreviations and Notation xiii
CHAPTER 1 INTRODUCTION 1
1.1 Research Background 1
1.2 Research Objective 3
1.3 Research Organization 3
CHAPTER 2 LITERATURE REVIEW 5
2.1 Discontinuity 5
2.2 Anisotropy 10
2.3 Model for Shear Strength of Rock Joints 12
2.3.1 Coulomb Model 12
2.3.2 Patton’s Bilinear Criterion (1966) 13
2.3.3 Ladanyi and Archambaults Criterion (1970) 13
2.3.4 Modified Ladanyi and Archambault Criterion (Saeb, 1990) 14
2.3.5 Barton’s Shear Strength Criterion (1973) 15
2.3.6 Grasselli’s Three-dimensional Criterion (2003) 15
2.4 Relationship between JRC and Z2 16
2.5 Laboratory Study for Anisotropic Shear Behavior of Rock Joints 18
2.6 Numerical Simulation for Shear Behavior of Rock Joints 25
2.6.1 Distinct Element Method (DEM) 26
CHAPTER 3 METHODOLOGY 33
3.1 Flowchart of Research 33
3.2 Development of PFC3D Model for Rock Joints under Different Shear Direction 43
3.2.1 Generation of Planar Joint 43
3.2.2 Generation of Sinusoidal Curve Shaped Joint 44
3.2.3 Shear Directions 48
CHAPTER 4 RESULTS AND DISCUSSION 52
4.1 A New Model for Anisotropic Shear Behavior of Rock Joints 52
4.2 Contact Area Ratio (CAR) 52
4.2.1 Contact Area Ratio of Sine Profile 54
4.2.2 Contact Area Ratio of Triangular Profile 55
4.3 Z2 for Different Shear Directions 55
4.3.1 Z2 of Sine Profile 62
4.3.2 Z2 of Triangular Profile 64
4.4 Validation 73
4.4.1 Validation with Numerical Simulation on Sinusoidal Profile 74
4.4.2 Validation with Numerical Simulation on Triangular Profile 89
4.4.3 Validation with Laboratory Data- (Zhang, 2019) 92
4.5 Failure Process and Failure Mode under Different Shear Direction 98
CHAPTER 5 CONCLUSIONS 121
CHAPTER 6 RECOMMENDATIONS 123
REFERENCES 124
參考文獻 1. Asadi, M. S., Rasouli, V., and Barla, G. A., “A bonded particle model simulation of shear strength and asperity degradation for rough rock fractures”, Rock mechanics and Rock Engineering. Vol. 45, pp. 649–675 (2012).
2. ASTM D5607-16, “Standard Test Method for Performing Laboratory Direct Shear Strength Tests of Rock Specimens under Constant Normal Force”, ASTM International, West Conshohocken, PA (2016).
3. Bagheripour, M., Rahgozar, R., Pashnesaz, H., and Malekinejad, M., “A complement to Hoek-Brown failure criterion for strength prediction in anisotropic rock”, Geomechanics and Engineering. Vol. 3, pp. 61–8 (2011).
4. Bahaaddini, M., Sharrock, G., and Hebblewhite, B. K., “Numerical direct shear tests to model the shear behaviour of rock joints”, Computers and Geotechnics. Vol. 51, pp. 101–115 (2013).
5. Bahaaddini, M., Sharrock, G., and Hebblewhite, B. K., “Numerical investigation of the effect of joint geometrical parameters on the mechanical properties of a non-persistent jointed rock mass under uniaxial compression”, Computers and Geotechnics. Vol. 49, pp. 206–225 (2013).
6. Bahaaddini, M., Hagan, P. C., Mitra, R., and Khosravi, M. H., “Experimental and numerical study of asperity degradation in the direct shear test”, Engineering Geology, Elsevier. Vol. 204, pp. 41–52 (2016).
7. Barton, N., “A review of the shear strength of filled discontinuities in rock”, Engineering Geology. Vol. 7, pp. 287–332 (1973).
8. Barton, N., “Suggested methods for the quantitative description of discontinuities in rock masses”, International Journal of Rock Mechanics and Mining Sciences and Geomechanics Abstract. Vol. 15, pp. 319–368 (1978).
9. Barton, N., and Choubey, V., “The shear strength of rock joints in theory and practice”, Rock Mechanics. Vol. 10, pp. 1–54 (1977).
10. Barton, N., Lien, R., and Lunde, J., “Engineering classification of rock masses for the design of rock support”, Rock Mechanics. Vol. 6, pp. 189–236 (1974).
11. Barton, N., and Quadros, E., “Anisotropy is Everywhere, to See, to Measure, and to Model", Rock Mechanics and Rock Engineering. Vol. 48, pp. 1323–1339 (2014).
12. Brown, E. T., Richards, L. R. and Barr, M. V., “Shear strength characteristics of Delabole slates”, Proc. Conf. Rock Eng, Newcastle (ed. P. B. Attewell), pp. 33–51 (1977).
13. Bieniawski, Z. T., “Engineering classification of jointed rock masses,” Trans. South African Institute Civil Engineering. Vol. 15 (1973).
14. Bieniawski, Z. T., “Rock mass classification in rock engineering”, In Exploration for rock engineering, proc. of the symp. (ed. Z.T. Bieniawski). Vol. 1, pp. 97–106 (1976).
15. Brady, B. H. G., and Brown, E. T., “Rock Mechanics for Underground Mining”, Third Edition. Kluwer Academic Publishers, New York, USA (1985).
16. Brady, B. H. G., and Brown, E., “Rock Mechanics for underground mining”, Third edition (2006).
17. Cho, N., Martin C. D., Sego D. C., “A clumped particle model for rock”, International Journal of Rock Mechanics and Mining Science. Vol. 44, pp. 997–1010 (2007).
18. Culshaw, M., and Ulusay, R., “The ISRM suggested methods for rock characterization, testing and monitoring: 2007–2014”, Bulletin of Engineering Geology and the Environment. Vol. 74 (2015).
19. Cundall, P. A., “A Computer Model for Simulating Progressive Large Scale Movements in Blocky Rock Systems”, Proceedings of the Symposium of the International Society for Rock Mechanics, Society for Rock Mechanics (ISRM), France. Vol. 2 (1971).
20. Cundall, P. A., “Rational design of Tunnel Supports: A Computer Model for Rock Mass behavior Using Interactive Graphics for the Input and Output of Geometrical data”, Technical Report MRD-2-74, Missouri River Division, U.S. Army Corps of Engineers, pp. 191 (1974).
21. Cundall, P. A., and Strack, O. D. L., “A discrete numerical model for granular assemblies”, Geotechnique. Vol. 29, pp. 47–65 (1979).
22. Deere, D. U., and Deere, D. W., “The Rock Quality Designation (RQD) Index in Practice”, Rock classification system for engineering purposes, ASTM STP 984, pp. 91–101 (1988).
23. Fletcher and Baylis, “Normal fault in Silurian sandstones near Canberra, Australia”, Science Source (Photograph). Retrieved 14:00, June 16, 2020, from https://www.sciencesource.com/archive/Normal-Fault- SS2408743.html.
24. Foliation, (2020, April 18). In Wikipedia, The Free Encyclopedia. Retrieved 09:30, June 03, 2020, from https://www.encyclopedia.com/science/dictionaries-thesauruses-pictures-and-press-releases/anisotropic.
25. Godgrey, N. J., Christensen, N. I., Okaya, D. A., “Anisotropy of schists: Contribution of crustal anisotropy to active source seismic experiments and shear wave splitting observations”, Journal of Geophysical Research. Vol. 105, pp. 27991–28007 (2000).
26. Goodman, R. E., “Introduction to Rock Mechanics”, John Wiley & Sons, New York (1980).
27. Grasselli, G., “Shear strength of rock joints based on quantified surface description”, Ph.D. dissertation, Swiss Federal Institute of Technology, Lausanne, Switzerland, (2001).
28. Grasselli, G., “Shear Strength of Rock Joints Based on Quantified Surface Description”, Rock mechanics and Rock Engineering. Vol. 39, pp. 295–314 (2006).
29. Grasselli, G., and Egger, P., “Constitutive law for the shear strength of rock joints based on three-dimensional surface parameters”, International Journal of Rock Mechanics & Mining Sciences. Vol. 40, pp. 25–40 (2003).
30. Harrison, J. P., and Hudson, J. A., “Engineering Rock Mechanics- Part 2: Illustrative Worked Examples, Elsevier Science Limited, Pergamon (2000).
31. Hoek, E., “Blast Damage in Rock”, Practical Rock Engineering e-notes, Rock Mechanics (2007).
32. Hoek E, Brown ET (1980) Underground excavations in rock. The
33. Institution of Mining and Metallurgy, London
34. Hoek, E., Brown, E. T., “Underground excavations in rock”, The Institute of Mining and Metallurgy, London (1980).
35. Huang, T. H., and Doong, Y. S., “Anisotropic shear strength of rock joint”, Proceedings of the International Symposium of Rock Joints, Loen, Norway, Barton, N., and Stephansson, O.,(eds), Balkema, Rotterdam, pp. 211–218 (1990).
36. Hudson, J. A., and Harrison, J. P., “Engineering Rock Mechanics- An Introduction to the Principles”, Elsevier Science Limited, Pergamon (1997).
37. International Society for Rock Mechanics (ISRM), “Suggested Methods for the Rock Characterization, Testing and Monitoring”, ISRM Commission on Testing Methods, Pergamon Press, Oxford (1981).
38. International Society for Rock Mechanics (ISRM), Commission on Terminology, “Symbols and Graphic Representation: Terminology”, Int. Soc. Rock Mech. secretary, Lisbon (1975).
39. International Society for Rock Mechanics (ISRM), Commission on standardization of laboratory and field tests, “Suggested methods for the quantitative description of discontinuities in rock masses. International Journal of Rock Mechanics and Mining Sciences and Geomechanics. Abstracts. Vol. 15, pp. 319–368 (1978).
40. Itasca, “PFC™ - Particle Flow Code (version 4.0) User’s Guides”, Minneapolis: Itasca Consulting Group (2008).
41. Ivars, D. M., Pierce, M. E., Darcel, C., Reyes-Montes, J., Potyondy, D. O., Young, R. P., and Cundall, P. A., “The synthetic rock mass approach for jointed rock mass modelling”, International Journal of Rock Mechanics and Mining Sciences. Vol. 48, pp. 219–244 (2011).
42. Ivars, D. M., Potyondy, D. O., Pierce M., Cundall P. A., “The smooth- joint contact model”, In: Proceedings of the 8th world congress on computational mechanics/5th European congress on computational mechanics and applied science and engineering, Venice, (2008).
43. Jing, L., Nordlund, E., and Stephansson, O., “An Experimental Study on the Anisotropy and Stress-dependency of the strength and Deformability of Rock Joints”, International Journal of Rock Mechanics and Mining Sciences. Geomechanics Abstracts. Vol. 29, pp. 535–542 (1992).
44. Jing, L., Nordlund, E., and Stephansson, O., “Developments in Geotechnical Engineering”, Elsevier. Vol. 85, pp. 1–21 (2007).
45. Joint sets. (2012, March 5). In Blogspot, “WHAT THE ROCKS TELL US”. Retrieved 08:15, June 17, 2020, from http://whattherockstellus.blogspot.com/2012/03/dominoes-anyone.html
46. Karami, A., Stead, D., “Asperity Degradation and damage in the Direct Shear Test: A Hybrid FEM/DEM Approach”, Rock Mech. Rock Eng. Vol. 41, pp. 229–266 (2008).
47. Kulatilake, P. H. S. W., Shou G., Huang, T. H., and Morgan, R. M., “ New peak shear strength criteria for anisotropic rock joints”, International Journal of Rock Mechanics and Mining Sciences. Vol. 32, pp. 673–697 (1995).
48. Kumar, R., and Verma, A. K., “Experimental Study of Anisotropic shear strength of rock joints”, (2015).
49. Kumar, R., and Verma, A. K., “Anisotropic shear behavior of rock joint replicas”, International Journal of Rock Mechanics and Mining Sciences. Vol. 90, pp. 62–73 (2016).
50. Ladanyi B., Archambault, G., “Simulation of shear behavior of a jointed rock mass”, Proceedings of the 11th Symposium on rock Mechanics: Theory and Practice, AIME, New York, pp. 105–125 (1970).
51. Matsukura, Y., Hashizume, K., Oguchi, C. T., “Effect of microstructure and weathering on the strength anisotropy of porous rhyolite”, Eng. Geol. Vol. 63, pp. 39–47 (2002).
52. Merabi, L., “Mechanical behavior of cohesive concrete-rock joints at the dam-foundation interface: geometrical and mechanical influence of asperities”, Mechanics of the solides, Université Grenoble Alpes (2018).
53. Myers, N. O., “Characterization of Surface Roughness”, Wear. Vol. 5, pp. 182–189 (1962).
54. Palmström A., “RMi - a rock mass characterization system for rock engineering purposes”, PhD thesis, University of Oslo, Norway, pp. 409 (1995).
55. Park, J. W., and Song, J. J., “Numerical simulation of a direct shear test on a rock joint using a bonded-particle model”, International Journal of Rock Mechanics and Mining Sciences. Vol. 46, pp. 1315–1328 (2009).
56. Park, B., and Min, K. B., “Bonded-particle discrete element modeling of mechanical behavior of transversely isotropic rock”, International Journal of Rock Mechanics and Mining Sciences. Vol. 76, pp. 243–255 (2015).
57. Patton, F. D., “Multiple Modes of Shear Failure in Rocks”, Proceedings of the 1st Conference of International Society for Rock Mechanics and Rock Engineering. Vol. 1 (1996).
58. PFC3D, User’s Guide (2008).
59. Potyondy, D. O., “Material modeling support in PFC” (2017).
60. Potyondy, D. O., and Cundall, P. A., “A bonded-particle model for rock”, International Journal of Rock Mechanics and Mining Sciences. Vol. 41, pp. 1329–1364 (2004).
61. Ramamurthy, T., “Strength and modulus responses of anisotropic rocks”, Comprehensive rock engineering, In: Hudson J. A., editor, Oxford, Pergamon, pp. 313–29 (1993).
62. Rocks. (2020, April 18). In Wikipedia, The Free Encyclopedia. Retrieved 05:11, May 20, 2020, from https://en.wikipedia.org/wiki/Rock_(geology).
63. Saeb, S. A., “Variance on the Ladanyi and Archambault′s shear strength criterion”, Proceedings of the International Symposium on Rock Joints. pp. 701–705 (1990).
64. Schweiger, H. F., Fabris, C., Ausweger, G. et al.,“Examples of successful numerical modelling of complex geotechnical problems”, Innov. Infrastruct. Solut. Vol. 4 (2019).
65. Sine wave. In Chegg study, Homework solutions. Retrieved 05:30, June 17, 2020 from https://www.chegg.com/homework-help/definitions/sine-wave-2
66. Tse, R., and Cruden, D., “Estimating joint roughness coefficients”, International Journal of Rock Mechanics and Mining Sciences and Geomechanics Abstracts. Vol. 16, pp. 303–307 (1979).
67. Wang, J. G., and Ichikawa, Yasuaki and Leung, C., “A constitutive model for rock interfaces and joints”, International Journal of Rock Mechanics and Mining Sciences. Vol. 40, pp. 41–53 (2003).
68. Xia, Cai-Chu and Tang, Zhi, C., and Xiao, Wei-Min and Song, Ying-Long, “New Peak Shear Strength Criterion of Rock Joints Based on Quantified Surface Description”, Rock Mechanics and Rock Engineering. Vol. 47, pp. 387–400 (2014).
69. Yang, Z. Y., Lo, S. C., Di, C. C., “Reassessing the joint roughness coefficient (JRC) estimation using Z2”, Rock Mech. Rock Eng. Vol. 34, pp. 243–251 (2001).
70. Yoon, J., “Application of experimental design and optimization to PFC model calibration in uniaxial compression simulation”, International Journal of Rock Mechanics and Mining Sciences. Vol. 44, pp. 871–889 (2007).
71. Zhang, X., Jiang, Q., Chen, N., Wei, W., and Feng, X., “Laboratory investigation on shear behavior of rock joints and a new peak shear strength criterion”, Rock Mechanics and Rock Engineering. Vol. 49, pp. 3495–3512 (2016).
72. Zhang, X., Jiang, Q., Kulatilake, P., Xiong, F., Yao, C., and Tang, Z., “Influence of asperity morphology on failure characteristics and shear strength properties of rock joints under direct shear tests”, International Journal of Geomechanics. Vol. 19, pp. 1943-5622 (2019).
指導教授 田永銘(Yong-Ming Tien) 審核日期 2020-8-19
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明