以作者查詢圖書館館藏 、以作者查詢臺灣博碩士 、以作者查詢全國書目 、勘誤回報 、線上人數:132 、訪客IP:18.224.45.211
姓名 林彥宏(Yen-Hung Lin) 查詢紙本館藏 畢業系所 土木工程學系 論文名稱 不同頻率含量基盤震動對液化地盤中板樁牆的影響
(The effect of input motion frequency content on the behavior of sheet pile wall at liquefiable ground)相關論文 檔案 [Endnote RIS 格式] [Bibtex 格式] [相關文章] [文章引用] [完整記錄] [館藏目錄] [檢視] [下載]
- 本電子論文使用權限為同意立即開放。
- 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
- 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。
摘要(中) 臺灣位於歐亞板塊交界,地震頻繁發生,且臺灣總面積約有三分之一為平原地區多屬地質軟弱的沖積地層,地下水位面高,土壤液化潛能較高,當大規模地震作用時,即可能發生土壤液化。板樁牆具有優秀的經濟性、便利性及施工性,因此常被作為河床、港灣、碼頭的擋土系統。河床地盤的土壤多為沖積土,又河床地區的地下水位面非常高,因此該區域通常有較高土壤液化潛能。當土壤液化發生時,板樁牆會因土壤大變形而傾倒及損毀。真實地震的頻率含量分佈皆不同,不同頻率含量的振動會使牆-土系統有不同的反應。本研究藉由四組動態離心模型試驗,模擬建於可液化地盤之板樁牆受不同頻率振動時的反應行為。在24 g離心重力場中,四組試驗輸入基盤最大加速度為0.16 g、0.15 g、0.27 g、0.08 g,頻率含量包含1 Hz、1 Hz與3 Hz合成的非等振幅正弦波,四組試驗配置及其他試驗條件均相同,並透過線性可變差動變壓器(Linear Variable Differential Transformer, LVDT)與地表追蹤計記錄板樁牆及土層表面受振的橫向位移行為。
試驗結果顯示在相同基盤加速度情況下:受3 Hz含量較多的基盤振動,土層具有較高超額孔隙水壓激發量、較大板樁牆傾斜位移及較大地表土壤位移量。板樁牆兩翼板的旋轉角分別為4.61°與4.15°,於背填土區距離板樁牆1.38 m處,土壤平均位移量為0.25 m;受3 Hz含量較低的基盤振動,會引致小超額孔隙水壓激發量、板樁牆傾斜位移、地表土壤位移與沉陷,板樁牆兩翼板的旋轉角分別為2.54°與3.26°;於背填土區距離板樁牆中心1.38 m處,土壤平均位移量約為0.18 m。摘要(英) The plain of west Taiwan is formed of soft alluvium ground with a high groundwater level. As Taiwan is located on the Circum-Pacific Seismic Belt, earthquakes occur frequently and can lead to soil liquefaction on the alluvium ground. Sheet pile walls are often used as a retaining system at riverbanks, harbors, and piers due to their cost-effectiveness, convenience, and constructability. Near the river, soil deposits are composed of alluvial soils and groundwater levels are very high, therefore soil liquefaction are usually more common around this area. When soil liquefaction occurs, the sheet pile walls would fall or become damaged as a result of soil deformation. The frequency content distribution for each earthquake is varied under real conditions; earthquake shaking at different frequency contents will provoke different behaviours from the wall-soil system. In this study, four dynamic centrifuge tests were conducted to simulate the sheet pile wall constructed at liquefiable ground, subject to the base shaking at different frequency contents. The peak base acceleration of input motion for each test were 0.16 g, 0.15 g, 0.27 g and 0.08 g, with frequency contents of 1 Hz and 1+3Hz, 21 cycles of non-equal amplitude sinusoidal wave. The horizontal displacement of the sheet pile wall and ground surface induced by shaking were measured and tracked by the Linear Variable Differential Transformers (LVDTs) and surface markers.
The results revealed that in the same peak base acceleration, models subjected to an input motion with higher 3 Hz content has higher excess pore water pressure excitation, and larger pile lateral displacement, the rotation angles of the two wing plates of the sheet pile wall were 2.54° and 3.26° respectively, and the average ground surface movement towards the dredge area was 0.25 m. Models subjected to an input motion with lower 3 Hz content has lower excess pore water pressure excitation and excitation rate, and lower pile lateral displacement; the rotation angles of the two wing plates of the sheet pile wall were 2.54° and 3.26° respectively, and the average ground surface movement towards the dredge area was 0.18 m.關鍵字(中) ★ 板樁牆
★ 不同頻率含量
★ 土壤液化
★ 動態離心試驗關鍵字(英) 論文目次 中文摘要 i
Abstract ii
誌謝 iii
目錄 iv
圖目錄 vii
表目錄 xiii
符號說明 xv
一、前言 1
1-1 研究背景與目的 1
1-2 研究方法 1
1-3 論文架構 2
二、文獻回顧 4
2-1 土壤液化定義、發生機制 4
2-1-1 土壤液化機制 4
2-1-2 土壤液化災害現象 6
2-2 離心模型尺度律 9
2-3 整合物理與數值模型模擬於土壤液化之研究計畫 11
2-3-1 VELACS project 11
2-3-2 LEAP project 11
2-4 靜態側向土壓力 15
2-5 動態側向土壓力 17
三、試驗設備與試體製作 19
3-1 試驗儀器與設備 19
3-1-1 地工離心機 19
3-1-2 單軸向振動台 20
3-1-3 資料擷取系統 23
3-1-4 固壁式蜂巢試驗箱 (Rigid container) 23
3-1-5 板樁牆模型 24
3-1-6 各式量測工具 27
3-1-7 移動式霣降儀 32
3-2 改良式圓錐貫入系統 (Cone penetration test system) 33
3-3 試驗配置 37
3-4 試驗材料 39
3-5 試體準備 44
3-5-1 試驗箱組立 44
3-5-2 試體製作 46
3-5-3 放置板樁牆模型 49
3-5-4 黏滯液體 53
3-5-5 試體飽和 56
四、試驗結果與討論 58
4-1 相機照片校正 58
4-2 試驗規劃與流程 60
4-3 試驗結果 61
4-3-1 NCU1_0.10g_0.03g 63
4-3-2 NCU2_0.08g_0.08g 72
4-3-3 NCU3_0.10g_0.16g 81
4-3-4 NCU4_0.06g_0.02g 90
4-3-5 地中位移計分析 99
4-3-6 圓錐貫入試驗分析 109
4-4 綜合討論 111
4-4-1 相同振動頻率不同基盤最大加速度之試驗比較 111
4-4-2 不同振動頻率含量之試驗比較 120
五、結論與建議 137
5-1 結論 137
5-2 建議 138
參考文獻 139
附件 141參考文獻 [1] Das, B.M., Principles of Foundation Engineering, Brooks/Cole Publishing Company, Pacific Grove, California (2008)
[2] Ishihara, K., “Stability of natural deposits during earthquake,” Proceedings. of 11th International Conference on Soil Mechanics and Foundation Engineering., San Francisco, Vol.1, pp.321-376 (1985)
[3] Krammer, S.L., Geotechnical earthquake engineering, Prentice Hall, New Jersey (1996)
[4] Kutter, B. L., Trevor J. C, Nicholas S., Masoud H. B., Majid T. M., Mourad Z., Sandra E., et al. "LEAP-UCD-2017 V. 1.01 Model Specifications." Cham (2020)
[5] Popescu, R. and Prevost, J. H “Comparison between VELACS numerical ′class A′ predictions and centrifuge experimental soil test results,” Soil Dynamics and Earthquake Engineering, Vol.14, pp.79-92 (1995)
[6] Prevost, J.H. and Popescu, R., “Constitutive relations for soil materials,” Electronic Journal of Geotechnical Engineering, Vol.1 (1996)
[7] Das, B.M: Principles of Foundation Engineering, Sixth Edition (Canada:Thomson, 2007), pp.415
[8] Civilax(2017), Seismic Earth Pressure Coefficient, February 26, 2017, https://www.civilax.com/seismic-earth-pressure-coefficient/
[9] Tobita, T., Manzari, M.T., Ozutsumi, O., Ueda, K., Uzuoka, R., Iai, S., “Benchmark centrifuge tests and analyses of liquefaction-induced lateral spreading during earthquake,” Geotechnics for catastrophic flooding events, pp.127–82 (2015)
[10] Hung, W. Y., Lee, C. J. and Hu, L. M. “Study of the effects of container boundary and slope on soil liquefaction by centrifuge modeling,” Soil Dynamics and Earthquake Engineering, Vol.113, pp.682-697 (2018)
[11] Manzari, M. T., Ghoraiby, M. E., Kutter, B. L., Zeghal, M., Abdoun, T., Arduino, P., Armstrong, R. J., Beaty, M., Carey, T., Chen, Y., Ghofrani, A., Gutierrez, D., Goswami, N., Haigh, S. K., Hung, W. Y., Iai, S., Kokkali, P., Lee, C. J., Madabhushi, S. P. G., Mejia L., Sharp, M., Tobita, T., Ueda, K., Zhou, Y. and Ziotopoulou, K., “Liquefaction experiment and analysis projects (LEAP): Summary of observations from the planning phase,” Soil Dynamics and Earthquake Engineering, Vol.113, pp.714-743 (2018)
[12] Kutter, B. L., Carey, T. J., Hashimoto, T., Zeghal, M., Adboun, T., Kokkali, P., Madabhushi, G., Haigh, S., Burali d’ Arezzo, F., Madabhushi, S., Hung, W. Y., Lee, C. J., Chegn, H. C., Iai, S., Tobita, T., Zhou, Y. G., Chen, Y., Sun, Z. B. and Manzari, M. T., “LEAP-GWU-2015 experiment specifications, results, and comparisons,” Soil Dynamics and Earthquake Engineering, Vol.113, pp.616-628 (2018)
[13] Kutter, B. L., Manzari, M. T., Zeghal, M., “Model Tests and Numerical Simulations of Liquefaction and Lateral Spreading LEAP-UCD-2017,” Springer Open (2020)
[14] LEAP RPI 2020 VERSION 0.91 MODEL SPECIFICATIONS
[15] 簡茂洲(2012),「擋土支撐之力學行為及側向變位量與管理值之關係」
[16] 蔡晨暉,「以離心模型試驗模擬沉箱式碼頭之受震行為」,碩士論文,國立中央大學土木工程學系,桃園,臺灣 (2010)
[17] 張有毅,「以離心模型試驗及個別元素法評估正斷層和逆斷層錯動地表及地下變形」,博士論文,國立中央大學土木工程學系,桃園,臺灣 (2013)
[18] 臺中市政府(2019),土壤液化潛勢查詢系統,2019年 05月 23日,https://www.liquid.net.tw/taichung/public/page-QA-knowledge.html
[19] 每日頭條(2019),步進馬達的步距角計算方法,2019 年 04月 20日,
https://kknews.cc/zh-tw/finance/kvb3gr8.html
[20] 胡林楙,「基盤土壤液化引致的側潰對上方土堤之影響及其改善對策」,碩士論文,國立中央大學土木工程學系,桃園,臺灣 (2018)指導教授 洪汶宜(Wen-Yi Hung) 審核日期 2020-8-20 推文 facebook plurk twitter funp google live udn HD myshare reddit netvibes friend youpush delicious baidu 網路書籤 Google bookmarks del.icio.us hemidemi myshare