博碩士論文 107322039 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:148 、訪客IP:3.138.137.199
姓名 張睿庭(Rui-Ting Chang)  查詢紙本館藏   畢業系所 土木工程學系
論文名稱 以離心模型試驗探討輸電鐵塔於不同地盤條件下之動態反應
(Dynamic response of electrical transmission tower with different soil stratum by centrifuge modelling)
相關論文
★ 以離心振動臺試驗模擬緩衝材料中廢棄物罐之振動反應★ 緩衝材料在不同圍壓下之工程性質
★ 具裂縫的緩衝材料自癒行為模擬★ 具不同上部結構之樁基礎受振行為
★ 基盤土壤液化對上方土堤位移的影響★ 回填與緩衝材料之動態強度
★ 砂質土壤中柔性擋土牆在動態載重下的行為★ Effect of Vertical Drain Methods on The Soil Liquefaction
★ Centrifuge Modelling on Failure Behaviours of Sandy Slope Caused by Gravity, Rainfall and Earthquake★ 微生物膠結作用對砂質土壤性質的影響
★ 基盤土壤液化引致的側潰對上方土堤之影響及其改善對策★ 土壤液化引致側向滑移對樁基礎之影響及其對策
★ 挖掘機鏟斗上土壤黏附問題的基礎研究★ 低放射性廢棄物最終處置回填材料於不同配比下之工程力學特性
★ 以離心振動台試驗探討 基盤振動方向與坡向夾角對側向滑移之反應★ 應用時域反射法於地層下陷監測之改善研發
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 發電廠傳輸電力至住宅或工商業區之過程,需透過輸電鐵塔進行電力傳輸,臺灣地貌變化大,輸電鐵塔常需建造於丘陵或山坡地區;以數值模擬分析結構穩定度時,通常以陣風作用於鐵塔上部結構的作用力為主要參數進行分析,針對地震力設計的規範則參考日本「送電用鐵塔基礎設計,第十三章,耐震設計」(2002) 進行基礎結構設計,基礎穩定性對於輸電鐵塔相當重要。
本研究進行一系列離心模型動態試驗,利用二階段離心模型縮尺律模擬輸電鐵塔A、B兩座重量分布不同但上部結構皆為60 m之輸電鐵塔,鐵塔坐落於土層相對密度85%的乾砂、軟岩及飽和地盤,其中包含水平及傾斜地盤,在40 g的穩定離心加速度場分別輸入1.8、0.4及0.2 Hz之主要振動事件,探討輸電鐵塔於不同地盤條件下受振動事件之動態反應。
試驗結果顯示,在乾砂地盤中鐵塔承受振動事件作用時,加速度放大反應較大;由於軟岩地盤能具有較高的圍束力,基礎穩定的狀況下不易產生加速度突波值,若振動事件沒有造成結構物共振,於乾砂地盤中的加速度放大倍率約為軟岩地盤的2倍,若振動事件造成結構物共振,於乾砂地盤及軟岩地盤之加速度放大倍率幾乎一致;在飽和地盤試驗中,若振動事件引致鐵塔共振時,於振動前期加速度放大反應較小,振動後期逐漸增大,後期約比前期反應大2倍;加速度相位差與振動事件頻率相關,在低頻與高頻振動事件中,輸電鐵塔A相對於基礎版A的相位差差異分別為55度和350度,輸電鐵塔B相對於基礎版B的相位差差異分別為12度和182度,由此可知振動事件頻率較高使上部結構的加速度相位差增加;於軟岩地盤中記錄到的彎矩值比乾砂地盤及飽和地盤小,因軟岩地盤提供基樁較大的圍束力,而上部結構之振動貢獻大部分的樁身彎矩值。
摘要(英) Electricity conveyance beginning from the power plant to residential and industrial areas through the electrical transmission tower. Taiwan is covered by 70% of mountain area; therefore, the towers are usually built on slope. When analyzing the structure stability by numerical simulation, wind load is the primary parameter and not ground motion. Hence, the stability of whole structure subjected several ground motions will be studied.
In this study, series of dynamic centrifuge modelling tests were conducted to simulate two different electricity transmission tower models that have 60 m of height and different weights, which scaled by generalized scaling law. The superstructure models were placed on relative density of 85% sandy, saturated and soft rock stratum that is modeled by mixing silica sand and cement with 0% and 20% slope. Thickness of the center of soil deposit are 24 m and 40 m in prototype under 40 g-level for flat and slope ground, respectively.
From the results can be summarized that: (1) During shaking, the towers have obvious acceleration amplification reaction on dry sand stratum. There is no peak acceleration value recorded during shaking event, due to higher confining pressure from the soft rock stratum let the pile stable. If the shaking event cause the structure to resonate, the acceleration amplification factor in dry sandy stratum is two times soft rock stratum, in contrast, the difference of acceleration amplification factor is almost the same. If the shaking event causes the superstructure on the saturated sandy stratum to resonate, the acceleration amplification reaction is gradually increased. (2) The acceleration phase difference is related to the frequency of input motion. In S2 and S6 events, the phase difference of tower A is 350 degrees and 55 degrees, respectively, and tower B is 182 degrees and 12 degrees, respectively. It indicates that higher input motion frequency causes higher phase difference. (3) The pile bending moment in soft rock stratum is smaller than dry sand and saturation stratum, due to the higher confining pressure of soft rock stratum. Vibration from superstructure contributes the most of pile bending moment.
關鍵字(中) ★ 離心模型試驗
★ 輸電鐵塔
★ 加速度放大倍率
★ 傾倒角
★ 樁身彎矩值
關鍵字(英) ★ centrifuge modelling test
★ electrical transmission tower
★ acceleration amplification factor
★ tilting angle
★ bending moment
論文目次 摘要 i
Abstract ii
致謝 iv
目錄 v
圖目錄 ix
表目錄 xvi
符號說明 xviii
一、緒論 1
1-1 研究動機與目的 1
1-2 研究方法 1
1-3 論文架構 2
二、文獻回顧 3
2-1 離心模型原理 3
2-1-1 二階段縮尺律 (Generalized scaling law) 3
2-1-2 二階段縮尺律對離心模型之影響 5
2-1-3 科氏加速度對離心模型試驗之影響 11
2-2 輸電鐵塔基礎設計及安全性評估 12
2-2-1 致災地形區環境評估 12
2-2-2 輸電鐵塔建設之環境地質評估 13
2-2-3 輸電鐵塔基礎形式及應用之場合 13
2-2-4 架空輸電線路設計準則 15
三、試驗設備與步驟 16
3-1 試驗儀器與設備 16
3-1-1 地工離心機 16
3-1-2 單軸向振動台 17
3-1-3 資料擷取系統 19
3-1-4 固壁式蜂巢試驗箱 (Rigid container) 19
3-1-5 各式感測器 20
3-1-6 移動式霣降儀 24
3-2 試驗材料 25
3-2-1 石英細砂 25
3-2-2 水泥混石英細砂 27
3-2-3 羧丙基甲基纖維素 30
3-3 二階段縮尺之離心模型 31
3-3-1 以二階段縮尺進行模型設計 31
3-3-2 輸電鐵塔模型 32
3-3-3 輸電鐵塔基礎版模型 35
3-3-4 沉箱式基樁模型 37
3-3-5 模型重量比例 39
3-4 試體準備 41
3-4-1 黏貼應變規 41
3-4-2 樁模型校正 42
3-4-3 試驗箱之準備 47
3-4-4 試體製作 47
3-4-5 架設鐵塔模型 52
3-4-6 試體飽和 53
3-4-7 離心模型試驗前準備工作 56
四、試驗規劃與結果討論 58
4-1 試驗規劃 58
4-2 試驗數據分析方法 66
4-2-1 評斷振動事件的標準 66
4-2-2 微振動探測 69
4-2-3 顯著頻率 (Predominant frequency) 70
4-2-4 轉換函數 (Transfer function, TR) 71
4-2-5 振動期間之加速度歷時 72
4-2-6 加速度放大因子 (Acceleration amplification factor) 73
4-2-7 輸電鐵塔加速度相位差 (Acceleration phase difference) 74
4-2-8 輸電鐵塔阻尼比 (Damping ratio) 76
4-2-9 基礎版之旋轉角與傾倒角 (Rotation angle and tilting angle) 77
4-2-10 樁身彎矩歷時 (Bending moment history) 79
4-2-11 各振動事件中的最大樁身彎矩值 80
4-2-12 評斷土壤液化之標準 82
4-2-13 位移歷時 83
4-3 試驗結果 84
4-3-1 乾砂傾斜地盤試驗結果 (DI) 84
4-3-2 軟岩水平地盤試驗結果 (CSF) 99
4-3-3 軟岩傾斜地盤試驗結果 (CSI) 114
4-3-4 飽和水平地盤試驗結果 (SF) 129
4-4 綜合討論 151
4-4-1 加速度放大倍率 151
4-4-2 轉換函數 155
4-4-3 阻尼比 164
4-4-4 加速度相位差 165
4-4-5 位移歷時 169
4-4-6 旋轉角與傾倒角 171
4-4-7 樁身彎矩歷時 175
五、結論與建議 181
5-1 結論 181
5-2 建議 183
參考文獻 184
附錄 187
參考文獻 [1] Iai, S., Tobita, T., and Nakahara, T., “Generalised scaling relations for dynamic centrifuge test, ” Journal of Géotechnique., Vol.55, No.5, pp. 355-362 (2005).
[2] Iai, S., and Tobita, T., “Application of the Generalized Scaling Law to Liquefiable Model Ground,” Annuals of Disas. Prev. Res. Inst., Kyoto Univ., No.54 B (2011).
[3] Campbell, K., and Bozorgnia, Y., “A Ground Prediction Equation for the Horizontal Component of Cumulative Absolute Velocity (CAV) Based on the PEER-NGA Strong Motion Database,” Earthquake Spectra, Volume 26, No. 3, pp.635-650 (2010).
[4] Richards, D.J., White, D.J., and Lehane, B.M., “Centrifuge modelling of the pushover failure of an electricity transmission tower,” Canadian Geotechnical Journal, Vol. 47, pp. 413-424 (2010).
[5] Muntazir Abbas, S., Heinz Konietzky, H., “Rock mass classification systems,” Pakistan., 2017.
[6] Clark, M., Richards, D.J., Clutterbuck, D., “Measured dynamic performance of electricity transmission towers following controlled broken-wire events,” CIGRE, Paris (2006)
[7] Tian, L., Li, H., Wang. Y., “Progressive collapse of power transmission tower-line system under extremely strong earthquake excitations, ” Structural Stability and Dynamics, Vol. 16, No. 07 (2015).
[8] Rodrigues, S., “Dynamics behavior and stability of transmission line towers under wind forces,” Wind Engineering and Industrial Aerodynamics, Vol. 91, Issue 8, pp.973-1094 (2003).
[9] Kumar, S., Baleshwar, P., “A parametric study on the vertical pullout capacity of suction caisson foundation in cohesive soil,” Innovative Infreastructure Solutions, Vol. 4. Issue 1 (2018).
[10] Lee, C.J., Wei, Y.C., Kou, T.C., “Boundary effects of a laminar container in centrifuge shaking table tests,” Soil Dynamics and Earthquake Engineering, Vol.34, No. 1, pp.37-51 (2012).
[11] Hung, W.Y., Lee, C.J., Chung, W.Y., Tsai, C.H., Chen, T., Huang, C.C., Wu, Y.C., “Centrifuge Modeling on Seismic Behavior of Pile in Liqueifable Soil Ground,”Applied Mechanics and Materials, Vol. 479-480, pp.1139-1143 (2014).
[12] Tikimatsu, K., Suzuki, S., Sato, M., “Effects of Inertial and Kinematic Interaction on Seismic Behavior Pile with Embedded Foundation,” Soil Dynamics and Earthquake Engineering, Vol. 25, pp.753-762 (2005).
[13] Madabhushi, S.,Haigh, S., Madabhushi, G., “LEAP-GWU-2015 Centrifuge and numerical modelling of slope liquefaction at the University of Cambridge,” Soil Dynamics and Earthquake Engineering,Vol. 113, pp.671-681 (2016).
[14] Hung, W.Y., Lee, C.J., Hu, L.M., “Study of the container boundary and slope on soil liquefaction by centrifuge modeling,” Soil Dynamics and Earthquake Engineering, Vol. 113, pp.682-697 (2018).
[15] Tobita, T., Ashino, T., Ren, T., Iai, S., “Kyoto University LEAP-GWU-2015 tests and the importance of curving the ground surface in centrifuge modelling,” Soil Dynamics and Earthquake Engineering,Vol. 113, pp.650-662 (2018).
[16] Wei, Y.C., Lee, C.J., Hung, W.Y., Chen, H.T., “Application of Hilbert-Huang transform to characterize soil liquefaction and quay wall seismic responses modeled in centrifuge shaking-table tests,” Soil Dynamics and Earthquake Engineering, Vol. 30, pp.614-629 (2010).
[17] 黃鎮臺和王文能,「臺灣地質災害與對策」,工程地質技術應用研討會,臺灣,(1989)。
[18] 翁勳政、謝德勇、邱欣瑜和徐玉杜,「中寮地區電塔設施之致災地形區環境地質評估探討」,臺灣能源期刊,第5卷第1期,11-25頁,2018。
[19] 翁勳政、郭泰融、謝德勇和徐玉杜,「電力設施地質環境之災害潛勢評估探討」,臺灣能源期刊,第3卷第2期,193-202頁,2016。
[20] 張東源、張家豪和蔡宗和,「從0206地震省思地質改良」,土木水利,第43卷第4期,2016。
[21] 黃俊、姚運生、陳志高和楊江,「累積絕對速度CAV和峰值加速度PGA聯合報警在高鐵地震監測預警中的應用」,災害學,第29卷第2期,213-216頁,2014。
[22] 賴盈如,「研習輸電線路鐵塔結構系統之耐震設計」,出國報告,台灣電力公司台北供電區營運處,2016。
[23] 國家地震工程研究中心,95年度研究成果報告,國家地震工程研究中心,台北,2006。
[24] 國家地震工程研究中心,101年度研究成果報告,國家地震工程研究中心,台北,2012。
[25] 楊宗翰,「具不同上部結構之樁基礎受振行為」,碩士論文,國立中央大學土木工程學系,中壢 (2016)。
[26] 黃俊學,「基盤土壤液化對上方土堤位移的影響」,碩士論文,國立中央大學土木工程學系,中壢 (2016)。
[27] 楊子霈,「以動態離心模型試驗模擬不同型式基礎建築物於液化地盤之受震反應」,碩士論文,國立中央大學土木工程學系,中壢 (2013)。
[28] 梁友承,「以離心模型模擬不同粒徑分佈砂層於液化時之行為」,碩士論文,國立中央大學土木工程學系,中壢 (2019)。
[29] 林郁庭,「以離心模型模擬離岸風機單樁受反覆水平側推之p-y曲線」,碩士論文,國立中央大學土木工程學系,中壢 (2013)。
[30] 陳亭璁,「以離心模型模擬離岸風機單樁於飽和砂土受單向反覆水平側推行為」,碩士論文,國立中央大學土木工程學系,中壢 (2016)。
指導教授 洪汶宜(Wen-Yi Hung) 審核日期 2020-8-20
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明