博碩士論文 107322088 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:168 、訪客IP:18.118.12.102
姓名 黃郁晴(Yu-Ching Huang)  查詢紙本館藏   畢業系所 土木工程學系
論文名稱 應用多時序Sentinel-1雷達影像進行崩塌地偵測
(Landslide detection using multi-temporal Sentinel-1 SAR imagery)
相關論文
★ 評估不同數值地型資料於降雨型崩塌作用模式之應用性-以小尺度坡面之崩塌事件為例★ 應用最大熵法於蒙古山區進行森林樹種分類
★ 利用Landsat衛星影像監測並預測中美洲瓜地馬拉首都–瓜地馬拉市之都市發展★ 都市化與發展:對海地永續發展之意涵
★ 客家文化重點發展區之客家政策研究:以龍潭大池整體環境規劃與營造計畫為例★ 利用多時期Landsat衛星影像進行森林砍伐之評估 -以尼加拉瓜波沙瓦生態保護區為例
★ 融合光學衛星影像及地形資訊進行崩塌地之判釋★ 應用Sentinel-1 SAR影像進行水稻監測-以泰國中部大城府省為例
★ 都市三維結構變遷之分析-以臺灣臺北市為例★ 應用 Sentinel-1 合成孔徑雷達資料進行地層下陷監測 - 以 2017 年泰國曼谷都 會區為例
★ 利用人工神經網絡模型建立多事件為基礎之崩塌模型-以台灣玉山國家公園為例★ 應用衛星影像於都市發展之監測與預測 ─以台灣桃園為例
★ 分析降雨及不透水面對台南水患發生之影響★ 應用Google Earth Engine與影像分類技術於巴拉圭查科地區進行森林砍伐評估
★ 應用多時期Sentinel-1 合成孔徑雷達影像進行崩塌及淹水偵測-以印尼爪哇島Pacitan地區為例★ 母岩裸露指標之建立並應用於崩塌判釋與監測
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 近年來遙測技術在觀測地球的各方面應用越來越普及,衛星觀測可快速獲得大範圍的地表資訊。針對崩塌災害問題,由颱風或強降雨造成的崩塌往往伴隨著多雲的大氣狀況,可能限制了光學影像的觀測能力,使得較不受雲霧限制的雷達觀測資料具有較大的優勢以提供即時提供災害資訊。為分析雷達資料的應用性,本研究使用合成孔徑雷達資料分析兩場崩塌事件中的崩塌地後向散射變化,分別為 2015 年因蘇迪勒颱風在台灣北部強降雨造成的崩塌地,以及2018年北海道大地震造成的丘陵地大面積崩塌。本研究使用歐洲太空總署之 Sentinel-1 C band 免費雷達資料,為了偵測崩塌地並分析崩塌地之後向散射變化,本研究發展了一個影像融合方法來減低地形對雷達回波造成之影響;另外,不同於使用單一事件後影像、或進行事件前後的影像變遷分析,本研究疊加多時期之雷達影像進行崩塌地的判釋。為此本研究蒐集災害發生前三個時期的影像 (T1-T3) 與災害發生後三個時期的影像 (T4-T6) ,共六個時期之影像,並設計四種實驗,應用監督分類器-支援向量機 (Support Vector Machine, SVM) 對上述兩場崩塌事件進行崩塌判釋。本研究設計了四種不同的多時序影像分析實驗,來檢視其崩塌判釋之正確性,四種實驗分別為:(1) 僅用災害發生後的一張影像 (T4);(2) 應用變遷分析概念,採用最接近災害發生前的一張影像 (T3) 與最接近災害發生後的一張影像 (T4) 進行分析;(3) 試驗即時監測之可行性,採用四個時期的影像,分別為災害發生前的 T1, T2 和 T3,以及災害發生後最近期 (T4) 之影像;(4) 採用全部六個時期的影像,利用較多的時序資料進行分析。同時,本研究在 SVM 分類過程也將三種極化資料的使用分別進行試驗:(1)僅使用VV 極化資料、(2)僅使用 VH 極化資料以及(3)同時使用VV及VH 兩種極化資料。
研究結果顯示,使用融合影像相較於用單一觀測模式之影像能較有效地偵測崩塌地的回波強度變化。其次,在利用多時序雷達資料進行影像分類時,四種模式中,以模式四 (T1-T6) 使用 VH+VV 融合資料有最佳分類成果。但若考慮即時、快速判釋的可能性時,則模式三 (T1-T4) 配合 VH+VV 資料在兩場事件針對 0.5 公頃以上的崩塌地,可以達到 75% 以上的正確率。而本研究之兩場事件的主要分類誤差為對崩塌地的過度分類。最後,本計畫期望此研究成果能有助於精進現有之山區崩塌災害監測方法,對崩塌災害管理與減災措施等能有具體貢獻。
摘要(英) The Earth Observation Satellites (EOS) are providing unprecedented opportunities to detect changes and assess economic impacts in case of disasters. To detect landslide hazards for a wide region, remotely sensed data has been widely applied due to its efficiency and low cost. However, the cloudy condition during a typhoon may limit the application of optical data. For an emergent monitoring task, Synthetic Aperture Radar (SAR) is a suitable tool for detecting landslides in cloudy and rainy weather. In this study, multi-temporal SAR images were analyzed to identify the backscattering changes over landslide surfaces and incorporate them into a supervised image classifier. Data from two landslide events, Typhoon Soudelor (2015) in northern Taiwan and Hokkaido earthquake (2018) in Japan, were collected to perform the landslide mapping tasks. The Sentinel-1 C-band SAR images from two observing modes (ascending and descending) were fused to reduce shadow effects in the mountainous region.
For analyzing the characteristics of multi-temporal SAR backscattering of landslide, this study collected image datasets, including VH and VV polarization, from six acquisition time: three are from pre-event and other three are from post-event (denoted by T1-T6, respectively). Four experiments are designed to perform the support vector machine (SVM) classification. Experiment 1 only uses images from T4 (backscattering dependence classification). Experiment 2 uses images from T3 and T4 (change detection). Experiment 3 uses images from T1-T4 (rapid mapping capability). Experiment 4 combines all of the images from T1-T6 (full time-series dataset). The results show that Exp. 3 and 4 can produce better results than the other experiments, especially when VH and VV polarization datasets were all incorporated in the classification scheme and Exp. 3 could be potentially applied for the urgent mapping of landslide hazards. The main mapping error is due to the misclassification between vegetation and landslide, and the proposed method is much effective in detecting landslides >0.5 ha with mapping accuracy >75%. Overall, the experiment results indicate the usefulness of the proposed method in detecting event-landslides using multi-temporal SAR images.
關鍵字(中) ★ 多時序分析
★ 合成孔徑雷達
★ 極化模式
★ Sentinel-1
★ 崩塌災害監測
關鍵字(英) ★ Multi-temporal analysis
★ Synthetic Aperture Radar
★ Polarization mode
★ Landslide hazard
論文目次 摘要 I
ABSTRACT II
目錄 III
圖目錄 V
表目錄 VII
第1章 緒論 1
1.1. 研究背景和動機 1
1.2. 研究目的 4
第2章 文獻回顧 6
2.1. 雷達影像散射特性 6
2.2. 雷達影像應用於崩塌偵測 9
2.3. 多時序遙測影像資料應用於地物判釋 11
第3章 研究區域與研究資料 13
3.1. 崩塌災例資料蒐集 13
3.2. 研究區概述 16
3.2.1. 蘇迪勒颱風事件之研究區 16
3.2.2. 2018北海道地震事件之研究區 19
3.3. 研究資料蒐集 22
3.3.1 Sentinel-1雷達影像 22
3.3.2 SPOT-6/7光學影像 27
3.3.3 Planet Labs 鴿子衛星光學影像 28
第4章 研究方法 30
4.1. 雷達影像資料處理及分析 31
4.1.1. 雷達影像資料前處理 31
4.1.2. 多角度觀測雷達融合演算法 34
4.1.3. 崩塌地之雷達回波強度特性分析 35
4.2. 影像分類 37
4.2.1. 影像分類 37
4.2.2. 精確度評估 39
第5章 研究結果 43
5.1. 災害圖層建置 43
5.2. 雷達影像中地形陰影區域之消除 45
5.3. 崩塌地之雷達回波強度變化分析 48
5.3.1. 蘇迪勒颱風事件前後崩塌地之回波強度變化 48
5.3.2. 2018北海道地震事件前後崩塌地之回波強度變化 51
5.4. 多時序影像變遷分析 54
5.4.1. 蘇迪勒颱風事件之多時序分析 54
5.4.2. 2018北海道地震事件之多時序分析 56
5.5. 多時序雷達資料影像分類成果 58
5.5.1. 蘇迪勒颱風事件分類成果 59
5.5.2. 2018北海道地震事件分類成果 74
第6章 討論 100
6.1. 雷達影像品質問題 100
6.2. 多時序雷達回波強度分析 101
6.3. 應用多時序雷達影像地物分類問題 102
第7章 結論 103
中文參考文獻 105
英文參考文獻 106
附錄 112
參考文獻 Chen, J.-B. (2016). 應用 Sentinel-1A 合成孔徑雷達影像於臺灣中部水稻田之判釋. National Central University.
Hung, T.-H. (2016). 應用衛星影像於都市發展之監測與預測─ 以台灣桃園為例. National Central University.
王國隆, & 林俊廷. (2015). 運用 ALOS PALSAR 雷達影像之差分干涉成果於潛在崩塌地調查–以眉溪流域為例. 航測及遙測學刊, 19(3), 253-265.
王國隆, 林俊廷, 張峻瑋, 林妍琇, 洪志祥, 洪政義, . . . 傅桂霖. (2019). 結合高精度無人載具測量及差分干涉合成孔徑雷達與 NDSI 分析於土砂量體的評估方法. Journal of Taiwan Agricultural Engineering, 65(4).
何世華, 林世峻, 莊智瑋, & 林昭遠. (2008). 植生指標對影像分類準確度影響之研究.
林昭遠, 何世華, 莊智瑋, & 黃麗娟. (2008). 衛星影像植生指標優選之研究.
林才添, 鄭祈全, & 王素芬. (2010). 遙測技術於台北市土地覆蓋變遷之研究. Journal of Photogrammetry and Remote Sensing, 15(2), 141-153.
施學延, & 陳良健. (2010). 衛星雷達影像反投影定位與有理函數模式. 碩士論文, 國立中央大學土木工程學系.
洪浩倫, 王志添, & 陳錕山. (2007). 利用多尺度匹配自動套疊衛星雷達影像. Journal of Photogrammetry and Remote Sensing, 12(4), 381-401.
章順慧. (2001). 淺談太空科技發展. 科學教育月刊
曾國欣, 蔡富安, 李睿綺, & 張中白. (2018). 雷達衛星輔助工程環境監測-開放資料的潛力與機會. 土木水利, 45(3), 4-12.
楊勤儀. (2007). 利用衛星影像萃取近岸地形-以台灣北部為例. 中央大學地球物理研究所學位論文, 1-159.
Blaschke, T., Feizizadeh, B., & Hölbling, D. (2014). Object-based image analysis and digital terrain analysis for locating landslides in the Urmia Lake Basin, Iran. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 7(12), 4806-4817.
Bovenga, F.; Wasowski, J.; Nitti, D.O.; Nutricato, R.; Chiaradia, M.T. Using COSMO/SkyMed X-band and ENVISAT C-band SAR interferometry for landslides analysis. Remote Sens. Environ. 2012, 119, 272–285.
Bruzzone, L., Marconcini, M., Wegmuller, U., & Wiesmann, A. (2004). An advanced system for the automatic classification of multitemporal SAR images. IEEE Transactions on Geoscience and Remote Sensing, 42(6), 1321-1334.
Capecchi, V., Perna, M., & Crisci, A. (2015). Statistical modelling of rainfall-induced shallow landsliding using static predictors and numerical weather predictions: preliminary results. Natural Hazards and Earth System Sciences, 15(1), 75.
Carr, J. R., & De Miranda, F. P. (1998). The semivariogram in comparison to the co-occurrence matrix for classification of image texture. IEEE Transactions on Geoscience and Remote Sensing, 36(6), 1945-1952.
Chang, K.-T., Chiang, S.-H., & Hsu, M.-L. (2007). Modeling typhoon-and earthquake-induced landslides in a mountainous watershed using logistic regression. Geomorphology, 89(3-4), 335-347.
Chen, S.-W., Wang, X.-S., Xiao, S.-P., & Sato, M. (2018). Target Scattering Mechanism in Polarimetric Synthetic Aperture Radar: Springer.
Chiang, S. H., & Chang, K. T. (2011). The potential impact of climate change on typhoon-triggered landslides in Taiwan, 2010–2099. Geomorphology, 133(3-4), 143-151.
Clausi, D. A. (2001). Comparison and fusion of co‐occurrence, Gabor and MRF texture features for classification of SAR sea‐ice imagery. Atmosphere-Ocean, 39(3), 183-194.
Colesanti, C., & Wasowski, J. (2006). Investigating landslides with space-borne Synthetic Aperture Radar (SAR) interferometry. Engineering geology, 88(3-4), 173-199.
Correa-Muñoz, N. A., & Murillo-Feo, C. A. (2018). DETECTION OF LANDSLIDES WITH SAR POLARYMETRY: CASE STUDY OF SOUTH-EASTERN COLOMBIA. International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, 42(3/W4).
Dong, C., Zhao, G., Meng, Y., Li, B., & Peng, B. (2020). The Effect of Topographic Correction on Forest Tree Species Classification Accuracy. Remote Sensing, 12(5), 787.
Ferretti, A., Fumagalli, A., Novali, F., Prati, C., Rocca, F., & Rucci, A. (2011). A new algorithm for processing interferometric data-stacks: SqueeSAR. IEEE Transactions on Geoscience and Remote Sensing, 49(9), 3460-3470.
Ghasemi, N., Tolpekin, V., & Stein, A. (2018). A modified model for estimating tree height from PolInSAR with compensation for temporal decorrelation. International Journal of Applied Earth Observation and Geoinformation, 73, 313-322.
Homayouni, S., McNairn, H., Hosseini, M., Jiao, X., & Powers, J. (2019). Quad and compact multitemporal C-band PolSAR observations for crop characterization and monitoring. International Journal of Applied Earth Observation and Geoinformation, 74, 78-87.
Hong, G., Zhang, Y., & Mercer, B. (2009). A wavelet and IHS integration method to fuse high resolution SAR with moderate resolution multispectral images. Photogrammetric Engineering & Remote Sensing, 75(10), 1213-1223.
Hopper, A., Zebker, H. A., Segall, P., Kampes, B., 2004, A new method for measuring deformation on volcanoes and other natural terrains using InSAR persistent scatterers. Geophys. Res. Lett., 31, L23611.
Hänsch, R., & Hellwich, O. (2018). Skipping the real world: Classification of PolSAR images without explicit feature extraction. ISPRS Journal of Photogrammetry and Remote Sensing, 140, 122-132.
Hsieh, Y.-C., Chan, Y.-C., & Hu, J.-C. (2016). Digital elevation model differencing and error estimation from multiple sources: A case study from the Meiyuan Shan landslide in Taiwan. Remote Sensing, 8(3), 199.
Inoue, Y., Sakaiya, E., & Wang, C. (2014). Capability of C-band backscattering coefficients from high-resolution satellite SAR sensors to assess biophysical variables in paddy rice. Remote Sensing of Environment, 140, 257-266.
Kalia, A., Frei, M., & Lege, T. (2017). A Copernicus downstream-service for the nationwide monitoring of surface displacements in Germany. Remote Sensing of Environment, 202, 234-249.
Konishi, T., & Suga, Y. (2018). Landslide detection using COSMO-SkyMed images: A case study of a landslide event on Kii Peninsula, Japan. European Journal of Remote Sensing, 51(1), 205-221.
Kyriou, A., & Nikolakopoulos, K. (2018). Assessing the suitability of Sentinel-1 data for landslide mapping. European Journal of Remote Sensing, 51(1), 402-411.
Li, L., Liu, X., Chen, Q., & Yang, S. (2018). Building damage assessment from PolSAR data using texture parameters of statistical model. Computers & Geosciences, 113, 115-126.
Luo, H., Li, X. W., Chen, E., Cheng, J., & Cao, C. (2010). Analysis of forest backscattering characteristics based on polarization coherence tomography. Science China Technological Sciences, 53(1), 166-175.
Makynen, M. P., Cheng, B., Simila, M. H., Vihma, T., & Hallikainen, M. T. (2007). Comparisons between SAR backscattering coefficient and results of a thermodynamic snow/ice model for the Baltic Sea land-fast sea ice. IEEE Transactions on Geoscience and Remote Sensing, 45(5), 1131-1141.
Manonmani, R., & Suganya, G. (2010). Remote sensing and GIS application in change detection study in urban zone using multi temporal satellite. International journal of Geomatics and Geosciences, 1(1), 60-65.
Matsuoka, M., & Yamazaki, F. (2004). Use of satellite SAR intensity imagery for detecting building areas damaged due to earthquakes. Earthquake Spectra, 20(3), 975-994.
Mondini, A. C., 2017. Measures of Spatial Autocorrelation Changes in Multitemporal SAR Images for Event Landslides Detection, Remote Sensing, 9(6), 554; doi:10.3390/rs9060554.
Mondini, A. C., Santangelo, M., Rocchetti, M., Rossetto, E., Manconi, A., & Monserrat, O. (2019). Sentinel-1 SAR amplitude imagery for rapid landslide detection. Remote Sensing, 11(7), 760.
Nikolakopoulos, K., & Kyriou, A. (2015). Preliminary results of using Sentinel-1 SAR data for DSM generation. European Journal of Geography, 6(3), 52-68.
Noor, N. M., Abdullah, A., & Hashim, M. (2018). Remote sensing UAV/drones and its applications for urban areas: a review. Paper presented at the IOP Conference Series: Earth and Environmental Science.
Oon, A., Ngo, K. D., Azhar, R., Ashton-Butt, A., Lechner, A. M., & Azhar, B. (2019). Assessment of ALOS-2 PALSAR-2L-band and Sentinel-1 C-band SAR backscatter for discriminating between large-scale oil palm plantations and smallholdings on tropical peatlands. Remote Sensing Applications: Society and Environment, 13, 183-190.
Pettinato, S., Santi, E., Paloscia, S., Pampaloni, P., & Fontanelli, G. (2013). The intercomparison of X-band SAR images from COSMO‑SkyMed and TerraSAR-X satellites: Case studies. Remote Sensing, 5(6), 2928-2942.
Plank, S., Hölbling, D., Eisank, C., Friedl, B., Martinis, S., & Twele, A. (2015). Comparing object-based landslide detection methods based on polarimetric SAR and optical satellite imagery—A case study in Taiwan. Paper presented at the Proceedings of the 7th International Workshop on Science and Applications of SAR Polarimetry and Polarimetric Interferometry, POLinSAR.
Plank, S., Twele, A., & Martinis, S. (2016). Landslide mapping in vegetated areas using change detection based on optical and polarimetric SAR data. Remote Sensing, 8(4), 307.
Raspini, F., Moretti, S., Fumagalli, A., Rucci, A., Novali, F., Ferretti, A., . . . Casagli, N. (2014). The COSMO-SkyMed constellation monitors the Costa Concordia wreck. Remote Sensing, 6(5), 3988-4002.
Rott, H. (1984). The analysis of backscattering properties from SAR data of mountain regions. IEEE Journal of Oceanic Engineering, 9(5), 347-355.
Rwanga, S. S., & Ndambuki, J. M. (2017). Accuracy assessment of land use/land cover classification using remote sensing and GIS. International Journal of Geosciences, 8(04), 611.
Samieie-Esfahany, S., Hanssen, R., van Thienen-Visser, K., & Muntendam-Bos, A. (2009). On the effect of horizontal deformation on InSAR subsidence estimates. Paper presented at the Proceedings of the Fringe 2009 Workshop, Frascati, Italy.
Senthilnath, J., Omkar, S. N., Mani, V., Vanjare, A., & Diwakar, P. G. (2014). Multi-temporal Satellite Image analysis using Gene expression programming. In Proceedings of the Second International Conference on Soft Computing for Problem Solving (SocProS 2012), December 28-30, 2012 (pp. 1039-1045). Springer, New Delhi.
Shibayama, T., Yamaguchi, Y., & Yamada, H. (2015). Polarimetric scattering properties of landslides in forested areas and the dependence on the local incidence angle. Remote Sensing, 7(11), 15424-15442.
Shimada, M., Watanabe, M., Kawano, N., Ohki, M., Motooaka, T., 2014. Detecting Mountainous Landslides by SAR Polarimetry: A Comparative Study Using Pi-SAR-L2 and X-band SARs. Trans. JSASS Aerospace Tech. Japan Vol. 12, No. ists29, pp. 9-15.
Shin, J., Park, H., & Kim, T. (2019). Characteristics of Laser Backscattering Intensity to Detect Frozen and Wet Surfaces on Roads. Journal of Sensors, 2019.
Tian, B., Li, Z., Engram, M. J., Niu, F., Tang, P., Zou, P., & Xu, J. (2015). Characterizing C-band backscattering from thermokarst lake ice on the Qinghai–Tibet Plateau. ISPRS Journal of Photogrammetry and Remote Sensing, 104, 63-76.
Ulaby, F. T., Kouyate, F., Brisco, B., & Williams, T. L. (1986). Textural infornation in SAR images. IEEE Transactions on Geoscience and Remote Sensing(2), 235-245.
Venkateswaran, K., & Kasthuri, N. (2013). Unsupervised Change Detection using Image Fusion and Kernel K-Means Clustering. International Journal of Computer Applications, 975, 8887.
Wang, C., Mao, X., & Wang, Q. (2016). Landslide displacement monitoring by a fully polarimetric SAR offset tracking method. Remote Sensing, 8(8), 624.
Waske, B., & Braun, M. (2009). Classifier ensembles for land cover mapping using multitemporal SAR imagery. ISPRS Journal of Photogrammetry and Remote Sensing, 64(5), 450-457.
Wen, C., Zhang, Y., & Deng, K. (2011). Urban area classification in high resolution SAR based on texture features. jiP, 1, 0.
Yajima, Y., Yamaguchi, Y., Sato, R., Yamada, H., & Boerner, W.-M. (2008). POLSAR image analysis of wetlands using a modified four-component scattering power decomposition. IEEE Transactions on Geoscience and Remote Sensing, 46(6), 1667-1673.
Yamaguchi, Y., Moriyama, T., Ishido, M., & Yamada, H. (2005). Four-component scattering model for polarimetric SAR image decomposition. IEEE Transactions on Geoscience and Remote Sensing, 43(8), 1699-1706.
Zhou, Z.-G., Tang, P., & Zhou, M. (2016). Detecting Anomaly Regions in Satellite Image Time Series Based on Sesaonal Autocorrelation Analysis. ISPRS Annals of the Photogrammetry, Remote Sensing and Spatial Information Sciences, 3, 303.
指導教授 姜壽浩(Shou-Hao Chiang) 審核日期 2020-8-20
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明