參考文獻 |
李嶸泰、張嘉琪、詹勳全、廖珮妤、洪雨柔(2012)。應用羅吉斯迴歸法進行阿里山地區山崩潛勢評估。中華水土保持學報,43(2),167-176。
何秋燕、詹錢登、楊思堯(2017)。應用證據權重法評估土石流發生潛勢-以高屏溪流域為例。中華水土保持學報,48(2),92-100。
吳俊鋐(2014)。以崩塌率為依據建構邏輯式迴歸崩塌潛勢評估模式。中華水土保持學報,45(4),257-265。
吳俊鋐(2015)。崩塌率為依據邏輯式迴歸法、頻率比法及證據權重法於崩塌潛勢模式應用之比較。臺灣水利,64(1),47-61。
吳俊鋐、陳樹群(2004)。崩塌潛勢預測方法於臺灣適用性之初探。中華水土保持學報,36(4),295-306。
岡田憲治(2002)。土壌雨量指数。測候時報,69(5),67-100。(in Japanese)
岡田憲治、牧原康隆、新保明彥、永田和彥、国次雅司、斉藤清(2001)。土壌雨量指数。天気,48(5),349-356。(in Japanese)
林金樹、陳峰盛(2002)。空間統計之半變異數模式對推估降雨量空間分布之影響。2002年中華地理資訊學會年會暨學術研討會。
林繼煒(2018)。應用邏輯斯迴歸於崩塌時間與空間預測的探討。國立彰化師範大學地理學系碩士論文。
柴田徹、清水正喜、八嶋厚、三村衛(1984)。濱田市の土砂災害の實態と中場崩壞地の土質特性,昭和58年7月山陰豪雨災害の調查研究,38-49。(in Japanese)
財團法人中興工程顧問社(2009)。集水區水文地質對坡地穩定性影響之調查評估計畫。經濟部中央地質調查所委託報告書。
張弼超(2005)。運用羅吉斯迴歸法進行山崩潛感分析-以臺灣中部國姓地區為例。國立中央大學應用地質研究所碩士論文。
陳樹群(2010)。筒狀模式結合土壤水份指數建構坡地土砂災害警戒機制。行政院農業委員會水土保持局委託成果報告(SWCB-99-326)。
陳樹群(2011)。筒狀模式建立坡地土砂災害警戒機制。行政院農業委員會水土保持局委託成果報告(SWCB-100-078)。
陳樹群(2012)。土石流防災整備模式檢討與更新。行政院農業委員會水土保持局委託成果報告(SWCB-101-161)。
陳樹群、馮智偉(2005)。應用Logistic迴歸繪製崩塌潛感圖─以濁水溪流域為例。中華水土保持學報,36(2),191-201。
陳樹群、蔡喬文、陳振宇、陳美珍(2013a)。筒狀模式之土壤雨量指數應用於土石流防災警戒。中華水土保持學報,44(2),131-143。
陳樹群、蔡喬文、何瑾余、陳美珍、尹孝元(2013b)。土壤雨量指數分析崩塌地案例特性及其在防災整備階段之應用。中華水土保持學會 102 年度年會,NO. 2.7,1-13。
菅原正巳(1972)。流出解析手法。共立出版社。(in Japanese)
鈴木雅一、福嶌義宏、武居有恒、小橋澄治(1979)。土砂災害發生の危險雨量,新砂防,31(3),110,1-7。(in Japanese)
劉宜君、陳樹群(2018)。結合土壤雨量指數與頻率比法建構坡地災害潛勢模式。中華水土保持學報,49(4),243-253。
鍾欣翰(2008)。考慮水文模式的地形穩定分析-以匹亞溪集水區為例。國立中央大學應用地質研究所碩士論文。
Beven, K. J., Kirkby, M. J. (1979). A physically based, variable contributing area model of basin hydrology. Hydrological Sciences Journal, 24(1), 43-69.
Bogaard, T., Greco, R. (2014). Hillslope hydrological modelling for landslides prediction. Hydrology and Earth System Sciences, 18, 1-4.
Cardinali, M., Reichenbach, P., Guzzetti, F., Ardizzone, F., Antonini, G., Galli, M., Cacciano, M., Castellani, M., Salvati, P. (2002). A geomorphological approach to the estimation of landslide hazards and risks in Umbria, Central Italy. Natural Hazards and Earth System Science, 2, 57-72.
Chang, K. T., Chiang, S. H. (2009). An integrated model for predicting rainfall-induced landslides. Geomorphology, 105, 366-373.
Chang, K. T., Chiang, S. H., Chen, Y. C., Mondini, A. C. (2014). Modeling the spatial occurrence of shallow landslides triggered by typhoons. Geomorphology, 208, 137-148.
Chen, C. W., Saito, H., Oguchi, T. (2017). Analyzing rainfall-induced mass movements in Taiwan using the soil water index. Landslides, 14, 1031-1041.
Dietrich, W. E., Reiss, R., Hsu, M. L., Montgomery, D. R. (1995). A process‐based model for colluvial soil depth and shallow landsliding using digital elevation data. Hydrological Processes, 9, 383-400.
Dietrich, W. E., Montgomery, D. R. (1998). SHALSTAB: a digital terrain model for mapping shallow landslide potential. University of California.
Huang, J. C., Kao, S. J. (2006). Optimal estimator for assessing landslide model efficiency. Hydrology and Earth System Sciences Discussions, 3, 1125-1144.
Huang, J. C., Kao, S. J., Hsu, M. L., Lin, J. C. (2006). Stochastic procedure to extract and to integrate landslide susceptibility maps: an example of mountainous watershed in Taiwan. Natural Hazards and Earth System Sciences, 6, 803-815.
Ishihara, Y., Kobatake, S. (1979). Runoff model for flood forecasting. Bull. Disas. Prev. Res. Inst., Kyoto Univ., 29-1(260).
Iverson, R. M. (2000). Landslide triggering by rain infiltration. Water Resources Research, 36(7), 1897-1910.
Koukis, G., Ziourkas, C. (1991). Slope instability phenomena in Greece: A statistical analysis. Bulletin of the International Association of Engineering Geology, 43(1), 47-60.
Lee, S., Talib, J. A. (2005). Probabilistic landslide susceptibility and factor effect analysis. Environmental Geology, 47(7), 982-990.
Montgomery, D. R., Dietrich, W. E. (1994). A physically based model for the topographic control on shallow landslidin. Water Resources Research, 30(4), 1153-1171.
Montgomery, D. R., Sullivan, K., Greenberg, H. M. (1998). Regional test of a model for shallow landsliding. Hydrological Processes, 12, 943-955.
O’loughlin, E. M. (1986). Prediction of surface saturation zones in natural catchments by topographic analysis. Water Resources Research, 22(5), 794-804.
Pack, R. T., Tarboton, D. G., Goodwin, C. N. (1998). The SINMAP approach to terrain stability mapping. 8th Congress of the International Association of Engineering Geology, Vancouver, British Columbia.
Pack, R. T., Tarboton, D. G., Goodwin, C. N. (2001). Assessing terrain stability in a GIS using SINMAP. 15th Annual GIS conference, GIS 2001, Vancouver, British Columbia.
Reichenbach, P., Rossi, M., Malamud, B. D., Mihir, M., Guzzetti, F. (2018). A review of statistically-based landslide susceptibility models. Earth-Science Reviews, 180, 60-91.
Saito, H., Nakayama, D., Matsuyama, H. (2010). Two types of rainfall conditions associated with shallow landslide initiation in Japan as revealed by Normalized Soil Water Index. SOLA, 6, 57-60.
Saito, H., Matsuyama, H. (2012). Catastrophic landslide disasters triggered by record-breaking rainfall in Japan: Their accurate detection with Normalized Soil Water Index in the Kii Peninsula for the year 2011. SOLA, 8, 81-84.
Stevenson, P. C. (1977). An empirical method for the evaluation of relative landslide risk. Bulletin of the International Association of Engineering Geology, 16(1), 69-72.
Wu, C. H., Chen, S. C., Chou, H. T. (2011). Geomorphologic characteristics of catastrophic landslides during typhoon Morakot in the Kaoping Watershed, Taiwan. Engineering Geology, 123, 13-21. |