參考文獻 |
Adames, Á. F., D. Kim, A. H. Sobel, A. Del Genio, and J. Wu, 2017a: Changes in the structure and propagation of the MJO with increasing CO2. J. Adv. Model. Earth Syst., 9, 1251–1268.
Arnold, N. P., Z. Kuang, and E. Tziperman, 2013: Enhanced MJO like variability at high SST. J. Clim., 26, 988–1001.
Arnold, N. P., M. Branson, Z. Kuang, D. A. Randall, and E. Tziperman, 2015: MJO intensification with warming in the superparameterized CESM. J. Clim., 28, 2706–2724.
Benedict, J. J., E. D. Maloney, A. H. Sobel, and D. M. W. Frierson, 2014: Gross moist stability and MJO simulation skill in three full-physics GCMs. J. Atmos. Sci., 71, 3327–3349.
Bony, S., and K. A. Emanuel, 2005: On the role of moist processes in tropical Intraseasonal variability: cloud–radiation and moisture–convection Feedbacks. J. Atmos. Sci., 62, 2770–2789.
Bui, H. X., and E. D. Maloney, 2018: Changes in Madden–Julian oscillation precipitation and wind variance under global warming. Geophys. Res. Lett., 45, 7148–7155.
Bui, H. X. and E. D. Maloney, 2019: Mechanisms for global warming impacts on Madden Julian oscillation precipitation amplitude. J. Clim., 32, 6961– 6975.
Chang, C.-W. J., W.-L. Tseng, H.-H. Hsu, N. Keenlyside, and B. J. Tsuang, 2015: The Madden–Julian Oscillation in a warmer world. Geophys. Res. Lett., 42, 6034–6042.
Chen, F., and J. Dudhia, 2001: Coupling an advanced land surface-hydrology model with the Penn State–NCAR MM5 modeling system. Part I: Model implementation and sensitivity. Mon. Wea. Rev., 129, 569–585.
Chen, G., and B. Wang, 2018b: Does the MJO have a westward group velocity? J. Clim., 31, 2435–2443.
Chou, C., and J. D. Neelin, 2004: Mechanisms of global warming impacts on regional tropical precipitation. J. Clim., 17:2688–2701.
Chou, C., J. D. Neelin, C. A. Chen, J. Y. Tu, 2009: Evaluating the ‘‘rich-get richer’’ mechanism in tropical precipitation change under global warming. J. Clim., 22:1982–2005.
Chou, C., and C‐A. Chen, 2010: Depth of convection and the weakening of tropical circulation in global warming, J. Clim., 23, 3019–3030.
Chou, C., T.-C. Wu, and P.-H. Tan, 2013: Changes in gross moist stability in the tropics under global warming. Climate Dyn., 41, 2481–2496.
Chou, M. D., and M. J. Suarez, 1994: An efficient thermal infrared radiation parameterization for use in general circulation models. NASA Tech. Memo. 104606, 98 pp.
Ciesielski, P. E., and Coauthors, 2014: Quality-controlled upper-air sounding dataset for DYNAMO/CINDY/AMIE: Development and corrections. J. Atmos. Oceanic Technol., 31, 741–764.
Dee, D. P., and Coauthors, 2011: The ERA-Interim reanalysis: Configuration and performance of the data assimilation system. Quart. J. Roy. Meteor. Soc., 137, 553–597.
Feng, J., P. Liu, W. Chen, and X. Wang, 2015: Contrasting Madden–Julian oscillation activity during various stages of EP and CP El Niños. Atmos. Sci. Lett., 16:32–37.
Grell, G. A., and S. R. Freitas, 2014: A scale and aerosol aware stochastic convective parameterization for weather and air quality modeling. Atmos. Chem. Phys., 14, 5233–5250.
Hagos, S., L. R. Leung, and J. Duddhia, 2011: Thermodynamics of the Madden–Julian oscillation in a regional model with constrained moisture. J. Atmos. Sci., 68, 1974–1989.
Ham, S., Hong, S. and S. Park, 2014: A study on air–sea interaction on the simulated seasonal climate in an ocean–atmosphere coupled model. Climate Dyn., 42, 1175–1187.
Han, J., and H.‐L. Pan, 2011: Revision of convection and vertical diffusion schemes in the NCEP global forecast system, Weather Forecasting, 26, 520– 533.
Hannah, W. M., and E. D. Maloney, 2011: The role of moisture convection feedbacks in simulating the Madden–Julian oscillation. J. Clim., 24, 2754–2770.
Hannah, W. M., and E. D. Maloney, 2014: The moist static energy budget in NCAR CAM5 hindcasts during DYNAMO. J. Adv. Model. Earth Syst., 6, 420–440.
Hara, M., T. Yoshikane, H. Kawase, F. Kimura, 2008: Estimation of the impact of global warming on snow depth in Japan by the pseudo-global warming method. Hydrol. Res. Lett., 2:61–64.
Holzer, M., and G. J. Boer, 2001: Simulated changes in atmospheric transport climate. J. Clim., 14:4398–4420.
Hong, S.-Y., Y. Noh, and J. Dudhia, 2006: A new vertical diffusion package with an explicit treatment of entrainment processes. Mon. Wea. Rev., 134, 2318–2341.
Hung, M.-P., J.-L. Lin, W. Wang, D. Kim, T. Shinoda, and S. J. Weaver, 2013: MJO and convectively coupled equatorial waves simulated by CMIP5 climate models. J. Clim., 26, 6185–6214.
Iacono, M. J., J. S. Delamere, E. J. Mlawer, M. W. Shephard, S. A. Clough, and W. D. Collins, 2008: Radiative forcing by long-lived greenhouse gases: Calculations with the AER radiative transfer models. J. Geophys. Res., 113, D13103.
Inoue, K., and L. E. Back, 2015b: Gross moist stability assessment during TOGA COARE: Various interpretations of gross moist stability. J. Atmos. Sci., 72, 4148–4166.
Inoue, K., and L. E. Back, 2017: Gross moist stability analysis: Assessment of satellite-based products in the GMS plane. J. Atmos. Sci., 74, 1819–1837.
Janjic, Z., I., 2000: Comment on “Development and Evaluation of a Convection Scheme for Use in Climate Models”, J. Atmos. Sci., 57. 3686.
Jiang, X., and Coauthors, 2015: Vertical structure and physical processes of the Madden–Julian oscillation: Exploring key model physics in climate simulations. J. Geophys. Res. Atmos., 120, 4718–4748.
Johnson, R. H., and P. E. Ciesielski, 2013: Structure and properties of Madden–Julian oscillations deduced from DYNAMO sounding arrays. J. Atmos. Sci., 70, 3157–3179.
Kain, J. S., 2004: The Kain–Fritsch convective parameterization: An update. J. Appl. Meteor., 43, 170–181.
Kiladis, G. N., J. Dias, K. H. Straub, M. C. Wheeler, S. N. Tulich, K. Kikuchi, K. M. Weickmann, and M. J. Ventrice, 2014: A comparison of OLR and circulation-based indices for tracking the MJO. Mon. Wea. Rev., 142, 1697–1715.
Kim, D., A. H. Sobel, E. D. Maloney, D. M. W. Frierson, and I.-S. Kang, 2011: A systematic relationship between intraseasonal variability and mean state bias in AGCM simulations. J. Clim., 24, 5506–5520,
Klotzbach, P. J., and E. C. J. Oliver, 2015: Modulation of Atlantic basin tropical cyclone activity by the Madden–Julian oscillation (MJO) from 1905 to 2011. J. Clim., 28, 204–217.
Lackmann, G. M., 2013: The south-central U.S. flood of May 2010: Present and future. J. Clim., 26, 4688–4709.
Lau, W. K. M., and D. E. Waliser, Eds., 2012: Intraseasonal Variability of the Atmosphere–Ocean Climate System. 2nd ed. Springer, 613 pp.
Lin, X., and R. H. Johnson, 1996: Kinematic and thermodynamic characteristics of the flow over the western Pacific warm pool during TOGA COARE. J. Atmos. Sci., 53, 695–715.
Lim, K.-S. S., and S.-Y. Hong, 2010: Development of an effective double-moment cloud microphysics scheme with prognostic cloud condensation nuclei (CCN) for weather and climate models. Mon. Wea. Rev., 138, 1587–1612.
Lorenz D.J., and E. T. DeWeaver, 2007: Tropopause height and zonal wind response to global warming in the IPCC scenario integrations. J. Geophys. Res., 112: D10119.
Madden, R. A., and P. R. Julian, 1971: Detection of a 40–50 day oscillation in the zonal wind in the tropical Pacific. J. Atmos. Sci., 28, 702–708.
Madden, R. A., and P. R. Julian, 1972: Description of global-scale circulation cells in the tropics with a 40–50 day period. J. Atmos. Sci., 29, 1109–1123.
Madden, R. A., and P. R. Julian, 1994: Observations of the 40–50-day tropical oscillation—A review. Mon. Wea. Rev., 122, 814–837.
Maloney, E. D., and D. L. Hartmann, 2000b: Modulation of eastern North Pacific hurricanes by the Madden–Julian oscillation. J. Clim., 13, 1451– 1460.
Maloney, E. D., and S. P. Xie, 2013: Sensitivity of MJO activity to the pattern of climate warming. J. Adv. Model. Earth Syst., 5, 32–47.
Maloney, E.D., Á.F. Adames, and H.X. Bui, 2019: Madden–Julian oscillation changes under anthropogenic warming. Nature Climate Change, 9, 26– 33.
Marshall, A.G., O. Alves, and H. H. Hendon, 2009: A coupled GCM analysis of MJO activity at the onset of El Nino. J. Atmos. Sci., 66, 996-983.
Marshall, A. G., and H. H. Hendon, 2015: Subseasonal prediction of Australian summer monsoon anomalies. Geophys. Res. Lett., 42, 10 913–10 919.
McPhaden, M. J., 1999: Genesis and evolution of the 1997–98 El Niño. Science, 283, 950–954.
Neelin, J. D., and I. M. Held, 1987: Modeling tropical convergence based on the moist static energy budget. Mon. Wea. Rev., 115, 3–12.
Neelin, J. D., and J.-Y. Yu, 1994: Modes of tropical variability under convective adjustment and the Madden–Julian oscillation. Part I: Analytical theory. J. Atmos. Sci., 51, 1876–1894.
Raymond, D. J., 2001: A new model of the Madden–Julian oscillation. J. Atmos. Sci., 58, 2807–2819.
Raymond, D. J., and Ž. Fuchs, 2007: Convectively coupled gravity and moisture modes in a simple atmospheric model. Tellus, 59A, 627–640.
Rushley, S. S., D. Kim, and Á. F. Adames, 2019: Changes in the MJO under Greenhouse Gas–Induced Warming in CMIP5 Models. J. Clim., 32, 803-821.
Sato, T., F. Kimura and A. Kitoh, 2007: Projection of global warming onto regional precipitation over Mongolia using a regional climate model. Journal of Hydrology, 333(1):144-154.
Skamarock, W. C., and Coauthors, 2008: A description of the Advanced Research WRF version 3. NCAR Tech. Note NCAR/TN-475+STR, 125 pp.
Sobel, A. H., S. Wang, and D. Kim, 2014: Moist static energy budget of the MJO during DYNAMO. J. Atmos. Sci., 71, 4276–4291.
Subramanian, A., M. Jochum, A. J. Miller, R. Neale, H. Seo, D. Waliser, and R. Murtugudde, 2014: The MJO and global warming: a study in CCSM4. Climate Dyn., 42, 2019–2031.
Trenberth, K. E., and Coauthors, 2007: Observations: Surface and atmospheric climate change. Climate Change 2007: The Physical Science Basis, S. Solomon et al., Eds., Cambridge University Press, 235–336.
Wang, B., 1988: Dynamics of tropical low-frequency waves: An analysis of the moist Kelvin wave. J. Atmos. Sci., 45, 2051–2065.
Wang, B., and H. Rui, 1990: Dynamics of the coupled moist Kelvin–Rossby wave on an equatorial β-plane. J. Atmos. Sci., 47, 397–413.
Wang, S., A. H. Sobel, F. Zhang, Y. Q. Sun, Y. Yue, and L. Zhou, 2015: Regional simulation of the October and November MJO events observed during the CINDY/DYNAMO field campaign at gray zone resolution. J. Clim., 28, 2097–2119.
Wheeler, M. C., and H. H. Hendon, 2004: An all-season real-time multivariate MJO index: Development of an index for monitoring and prediction. Mon. Wea. Rev., 132, 1917–1932.
Wolding, B. O., and E. D. Maloney, 2015: Objective diagnostics and the Madden–Julian oscillation. Part II: Application to moist static energy and moisture budgets. J. Clim., 28, 7786– 7808.
Yu, J.-Y., and J. D. Neelin, 1994: Modes of tropical variability under convective adjustment and the Madden-Julian Oscillation. Part II: Numerical results. J. Atmos. Sci., 51, 1895-1914.
Yu, J.-Y., and J. D. Neelin, 1997: Analytic approximations for moist convectively adjusted regions. J. Atmos. Sci., 54, 1054-1063.
Yu, J.-Y., C. Chou, and J. D. Neelin, 1998: Estimating the gross most stability of the tropical atmosphere. J. Atmos. Sci., 55, 1354-1372.
Zhang, C., 2005: Madden-Julian oscillation. Rev. Geophys., 43, RG2003.
Zhang, C., Y. Wang, and K. Hamilton, 2011: Improved representation of boundary layer clouds over the Southeast Pacific in ARW‐WRF using a modified Tiedtke cumulus parameterization scheme, Mon. Weather Rev., 139, 3489– 3513. |