參考文獻 |
Anderson, J. L., 2007: Exploring the need for localization in ensemble data assimilation using a hierarchical ensemble filter. Phys. D Nonlinear Phenom., 230, 99–111, doi:10.1016/j.physd.2006.02.011
Anthes, R. A., 2011: Exploring Earth’s atmosphere with radio occultation: contributions to weather, climate and space weather. Atmos. Meas. Tech., 4, 1077–1103, doi:10.5194/amt-4-1077-2011.
Anthes, R. A., and Coauthors, 2008: The COSMIC/FORMOSAT-3 Mission: Early Results. Bull. Amer. Meteor. Soc., 89, 313–334, doi:10.1175/BAMS-89-3-313.
Aparicio, J. M., and G. Deblonde, 2008: Impact of the assimilation of CHAMP refractivity profiles on environment Canada global forecasts. Mon.Wea. Rev., 136, 257–275, doi:10.1175/2007MWR1951.1.
Arnold, C. P., and C. H. Dey, 1986: Observing-systems simulation experiments: past, present and future. Bull. Amer. Meteor. Soc., 67, 687–695,
doi:10.1175/1520-0477(1986)067<0687:OSSEPP>2.0.CO;2.
Bannister, R. N., 2017: A review of operational methods of variational and ensemble-variational data assimilation. Q. J. R. Meteorol. Soc., 143, 607–633, doi:10.1002/qj.2982.
Barker, D. M., 1998: Var scientific development paper 25: The use of synoptic-dependent error structure in 3DVAR. UK Met Office Tech. Rep., 2 pp. [Available from the Met Office, Saughton House, Broomhouse Dr., Edinburgh EH11 3XQ, United Kingdom.].
Bauer, P., G. Radnóti, S. Healy, and C. Cardinali, 2014: GNSS radio occultation constellation observing system experiments. Mon.Wea. Rev., 142, 555–572, doi:10.1175/MWR-D-13-00130.1.
Bishop, C. H., J. S. Whitaker, and L. Lei, 2017: Gain form of the ensemble transform Kalman Filter and its relevance to satellite data assimilation with model space ensemble covariance localization. Mon.Wea. Rev., 145, 4575–4592,
doi:10.1175/MWR-D-17-0102.1.
Bonavita, M., 2014: On some aspects of the impact of GPSRO observations in global numerical weather prediction. Q. J. R. Meteorol. Soc., 140, 2546–2562, doi:10.1002/qj.2320.
——, M. Hamrud, and L. Isaksen, 2015: EnKF and Hybrid Gain Ensemble Data Assimilation. Part II: EnKF and Hybrid Gain Results. Mon.Wea. Rev., 143, 4865–4882, doi:10.1175/MWR-D-15-0071.1.
Bormann, N., M. Bonavita, R. Dragani, R. Eresmaa, M. Matricardi, and A. Mcnally, 2016: Enhancing the impact of IASI observations through an updated observation-error covariance matrix. Q. J. R. Meteorol. Soc., 142, 1767–1780, doi:10.1002/qj.2774.
Boukabara, S. A., and Coauthors, 2016: Community Global Observing System simulation experiment (OSSE) package (CGOP): Description and usage. J. Atmos. Ocean. Technol., 33, 1759–1777, doi:10.1175/jtech-d-16-0012.1.
——, and Coauthors, 2018: Community Global Observing System Simulation Experiment (OSSE) Package (CGOP): Perfect observations simulation validation. J. Atmos. Ocean. Technol., 35, 207–226, doi:10.1175/JTECH-D-17-0077.1.
Buehner, M., 2005: Ensemble-derived stationary and flow-dependent background-error covariances: Evaluation in a quasi-operational NWP setting. Q. J. R. Meteorol. Soc., 131, 1013–1043, doi:10.1256/qj.04.15.
——, P. L. Houtekamer, C. Charette, H. L. Mitchell, and B. He, 2010: Intercomparison of Variational Data Assimilation and the Ensemble Kalman Filter for Global Deterministic NWP. Part II: One-Month Experiments with Real Observations. Mon.Wea. Rev., 138, 1567–1586, doi:10.1175/2009MWR3158.1.
Cardinali, C., 2009: Monitoring the observation impact on the short-range forecast. Q. J. R. Meteorol. Soc., 135, 239–250, doi:10.1002/qj.366.
——, and F. Prates, 2011: Performance measurement with advanced diagnostic tools of all-sky microwave imager radiances in 4D-Var. Q. J. R. Meteorol. Soc., 137, 2038–2046, doi:10.1002/qj.865.
——, and S. Healy, 2014: Impact of GPS radio occultation measurements in the ECMWF system using adjoint-based diagnostics. Q. J. R. Meteorol. Soc., 140, 2315–2320, doi:10.1002/qj.2300.
Carrassi, A., A. Trevisan, L. Descamps, O. Talagrand, and F. Uboldi, 2008: Controlling instabilities along a 3DVar analysis cycle by assimilating in the unstable subspace: A comparison with the EnKF. Nonlinear Process. Geophys., 15, 503–521, doi:10.5194/npg-15-503-2008.
Caya, A., J. Sun, and C. Snyder, 2005: A Comparison between the 4DVAR and the Ensemble Kalman Filter Techniques for Radar Data Assimilation. Mon.Wea. Rev., 133, 3081–3094, doi:10.1175/MWR3021.1.
Chang, C.-C., S.-C.Yang, and C. Keppenne, 2014: Applications of the Mean Recentering Scheme to Improve Typhoon Track Prediction: A Case Study of Typhoon Nanmadol (2011). J. Meteorol. Soc. Japan. Ser. II, 92, 559–584, doi:10.2151/jmsj.2014-604.
——, S. G. Penny, and S.-C. Yang, 2020a: Hybrid Gain Data Assimilation using Variational Corrections in the Subspace Orthogonal to the Ensemble. Mon.Wea. Rev., 148, 2331–2350, doi:10.1175/MWR-D-19-0128.1.
Chang, Y. P., S. C.Yang, K. J.Lin, G. Y.Lien, andC. M.Wu, 2020b: Impact of tropical cyclone initialization on its convection development and intensity: A case study of Typhoon megi (2010). J. Atmos. Sci., 77, 443–464, doi:10.1175/JAS-D-19-0058.1.
Chen, S.-Y., C.-Y. Huang, Y.-H. Kuo, Y.-R. Guo, and S. Shiau, 2009: Assimilation of GPS Refractivity from FORMOSAT-3/COSMIC Using a Nonlocal Operator with WRF 3DVAR and Its Impact on the Prediction of a Typhoon Event. Terr. Atmos. Ocean. Sci., 20, 133, doi:10.3319/TAO.2007.11.29.01(F3C).
Chen, S. Y., H. Zhao, and C. Y. Huang, 2018a: Impacts of GNSS Radio Occultation Data on Predictions of Two Super-Intense Typhoons with WRF Hybrid Variational-Ensemble Data Assimilation. J. Aeronaut. Astronaut. Aviat., 50, 347–364, doi:10.6125/JoAAA.201812_50(4).02.
Chen, X. M., and Coauthors, 2018b: The impact of airborne radio occultation observations on the simulation of Hurricane Karl (2010). Mon.Wea. Rev., 146, 329–350, doi:10.1175/MWR-D-17-0001.1.
Chen, Y., and C. Snyder, 2007: Assimilating vortex position with an ensemble Kalman filter. Mon.Wea. Rev., 135, 1828–1845, doi:10.1175/MWR3351.1.
Chen, Y., S. R. H. Rizvi, X. Y. Huang, J. Min, and X. Zhang, 2013: Balance characteristics of multivariate background error covariances and their impact on analyses and forecasts in tropical and Arctic regions. Meteorol. Atmos. Phys., 121, 79–98, doi:10.1007/s00703-013-0251-y.
Chen, Y. C., M. E. Hsieh, L. F. Hsiao, Y. H. Kuo, M. J. Yang, C. Y. Huang, and C. S. Lee, 2015: Systematic evaluation of the impacts of GPSRO data on the prediction of typhoons over the northwestern Pacific in 2008-2010. Atmos. Meas. Tech., 8, 2531–2542, doi:10.5194/amt-8-2531-2015.
Clayton, A. M., A. C. Lorenc, and D. M. Barker, 2013: Operational implementation of a hybrid ensemble/4D-Var global data assimilation system at the Met Office. Q. J. R. Meteorol. Soc., 139, 1445–1461, doi:10.1002/qj.2054.
Cook, K., M. J. Wenkel, C. J. Fong, N. Yen, and G. S. Chang, 2016: From paper to production: Status update for the COSMIC-2/FORMOSAT-7 program. IEEE Aerosp. Conf. Proc., 2016-June, doi:10.1109/AERO.2016.7500755.
Corazza, M., and Coauthors, 2003: Use of the breeding technique to estimate the structure of the analysis “errors of the day.” Nonlinear Process. Geophys., 10, 233–243, doi:10.5194/npg-10-233-2003.
——, E.Kalnay, and S. C. Yang, 2007: An implementation of the Local Ensemble Kalman Filter in a quasi geostrophic model and comparison with 3D-Var. Nonlinear Process. Geophys., 14, 89–101, doi:10.5194/npg-14-89-2007.
Cucurull, L., and M. J. Mueller, 2020: An analysis of alternatives for the COSMIC-2 constellation in the context of global observing system simulation experiments. Weather Forecast., 35, 51–66, doi:10.1175/WAF-D-19-0185.1.
Cucurull, L., J. C. Derber, R. Treadon, and R. J. Purser, 2007: Assimilation of Global Positioning System Radio Occultation Observations into NCEP’s Global Data Assimilation System. Mon.Wea. Rev., 135, 3174–3193, doi:10.1175/MWR3461.1.
Cucurull, L., R. A. Anthes, and L.-L. Tsao, 2014: Radio Occultation Observations as Anchor Observations in Numerical Weather Prediction Models and Associated Reduction of Bias Corrections in Microwave and Infrared Satellite Observations. J. Atmos. Ocean. Technol., 31, 20–32, doi:10.1175/JTECH-D-13-00059.1.
Cucurull, L., R. Li, and T. R .Peevey, 2017: Assessment of radio occultation observations from the COSMIC-2 mission with a simplified observing system simulation experiment configuration. Mon.Wea. Rev., 145, 3581–3597, doi:10.1175/MWR-D-16-0475.1.
Cucurull, L. , R. Atlas, R. Li, M. J. Mueller, and R. N. Hoffman, 2018: An observing system simulation experiment with a constellation of Radio Occultation Satellites. Mon.Wea. Rev., 146, 4247–4259, doi:10.1175/MWR-D-18-0089.1.
English, S., and Coauthors, 2013: Impact of Satellite Data. Tech. Memoradum ECMWF, 46.
Errico, R. M., R. Yang, N. C. Privé, K. S. Tai, R. Todling, M. E. Sienkiewicz, and J. Guo, 2013: Development and validation of observing-system simulation experiments at NASA’s global modeling and assimilation office. Q. J. R. Meteorol. Soc., 139, 1162–1178, doi:10.1002/qj.2027.
Gobiet, A., G. Kirchengast, G. L. Manney, M. Borsche, C. Retscher, and G. Stiller, 2007: Retrieval of temperature profiles from CHAMP for climate monitoring: Intercomparison with Envisat MIPAS and GOMOS and different atmospheric analyses. Atmos. Chem. Phys., 7, 3519–3536, doi:10.5194/acp-7-3519-2007.
Golub, G. H. and C. F. Van Loan, 2013: Matrix Computations. 4th Edition, Johns Hopkins University Press, Baltimore.
Goodliff, M., J. Amezcua, and P. J. VanLeeuwen, 2015: Comparing hybrid data assimilation methods on the Lorenz 1963 model with increasing non-linearity. Tellus A Dyn. Meteorol. Oceanogr., 67, 26928, doi:10.3402/tellusa.v67.26928.
Greybush, S. J., E. Kalnay, T. Miyoshi, K. Ide, and B. R. Hunt, 2011: Balance and ensemble Kalman filter localization techniques. Mon.Wea. Rev., 139, 511–522, doi:10.1175/2010MWR3328.1.
Ha, J. H., J. H. Kang, and S. J. Choi, 2018: The impact of vertical resolution in the assimilation of GPS radio occultation data. Weather Forecast., 33, 1033–1044, doi:10.1175/WAF-D-17-0061.1.
Hajj, G. A., and Coauthors, 2004: CHAMP and SAC-C atmospheric occultation results and intercomparisons. J. Geophys. Res. D Atmos., 109, 1–24, doi:10.1029/2003jd003909.
Hamill, T. M., and C. Snyder, 2000: A Hybrid Ensemble Kalman Filter–3D Variational Analysis Scheme. Mon.Wea. Rev., 128, 2905–2919, doi:10.1175/1520-0493(2000)128<2905:AHEKFV>2.0.CO;2.
Han, B., Y. Morton, E. Gunawan, and D. Xu, 2019: Planetary Boundary Layer Height Detection Using Mountaintop-Based GNSS Radio Occultation Signal Amplitude. IEEE Trans. Geosci. Remote Sens., 57, 4332–4348, doi:10.1109/TGRS.2018.2890676.
Harnisch, F., S. B. Healy, P. Bauer, and S. J. English, 2013: Scaling of GNSS radio occultation impact with observation number using an ensemble of data assimilations. Mon.Wea. Rev., 141, 4395–4413, doi:10.1175/MWR-D-13-00098.1.
He, W., S. Ho, H. Chen, X. Zhou, D. Hunt, and Y.-H. Kuo, 2009: Assessment of radiosonde temperature measurements in the upper troposphere and lower stratosphere using COSMIC radio occultation data. Geophys. Res. Lett., 36, , doi:10.1029/2009GL038712.
Healy, S. B., 2008: Forecast impact experiment with a constellation of GPS radio occultation receivers. 118, 111–118, doi:10.1002/asl.
Healy, S. B., A. M. Jupp, and C. Marquardt, 2005: Forecast impact experiment with GPS radio occultation measurements. Geophys. Res. Lett., 32, 1–4, doi:10.1029/2004GL020806.
Ho, S., M. Goldberg, Y. Kuo, C. Zou, and W. Schreiner, 2009: Calibration of Temperature in the Lower Strato sphere from Micro wave Measurements Using COSMIC Radio Occultation Data : Preliminary Results. 20, 87–100, doi:10.3319/TAO.2007.12.06.01(F3C)1.
Ho, S., Y.H. Kuo, W. Schreiner, and X. Zhou, 2010: Using SI‐traceable Global Positioning System radio occultation measurements for climate monitoring. Bull. Am. Meteorol. Soc., 91, S36–S37, doi:10.1175/BAMS-91-7-StateoftheClimate.
Hoffman, R. N., and R. Atlas, 2016: Future Observing System Simulation Experiments. Bull. Am. Meteorol. Soc., 97, 1601–1616, doi:10.1175/BAMS-D-15-00200.1. http://journals.ametsoc.org/doi/10.1175/BAMS-D-15-00200.1.
Honda, T., and Coauthors, 2018: Assimilating all-sky Himawari-8 satellite infrared radiances: A case of Typhoon Soudelor (2015). Mon.Wea. Rev., 146, 213–229, doi:10.1175/MWR-D-16-0357.1.
Houtekamer, P. L., and H. L. Mitchell, 1998: Data Assimilation Using an Ensemble Kalman Filter Technique. Mon.Wea. Rev., 126, 796–811, doi:10.1175/1520-0493(1998)126<0796:DAUAEK>2.0.CO;2.
——, and F. Zhang, 2016: Review of the Ensemble Kalman Filter for Atmospheric Data Assimilation. Mon.Wea. Rev., 144, 4489–4532, doi:10.1175/MWR-D-15-0440.1.
——, X. Deng, H. L. Mitchell, S. J. Baek, and N. Gagnon, 2014: Higher resolution in an operational ensemble Kalman filter. Mon.Wea. Rev., 142, 1143–1162, doi:10.1175/MWR-D-13-00138.1.
Houtekamer, P. L., M.Buehner, andM.DeLa Chevrotière, 2019: Using the hybrid gain algorithm to sample data assimilation uncertainty. Q. J. R. Meteorol. Soc., 145, 35–56, doi:10.1002/qj.3426.
Huang, C.-Y., Y.-H. Kuo, S.-H. Chen, and F. Vandenberghe, 2005: Improvements in Typhoon Forecasts with Assimilated GPS Occultation Refractivity. Weather Forecast., 20, 931–953, doi:10.1175/WAF874.1.
——, and Coauthors, 2010: Impact of GPS radio occultation data assimilation on regional weather predictions. GPS Solut., 14, 35–49, doi:10.1007/s10291-009-0144-1.
——, S.-Y. Chen, S. K. A. V. P. Rao Anisetty, S.-C. Yang, and L.-F. Hsiao, 2016: An Impact Study of GPS Radio Occultation Observations on Frontal Rainfall Prediction with a Local Bending Angle Operator. Weather Forecast., 31, 129–150, doi:10.1175/WAF-D-15-0085.1.
Kalnay, E., and S. C.Yang, 2010: Accelerating the spin-up of Ensemble Kalman filtering. Q. J. R. Meteorol. Soc., 136, 1644–1651, doi:10.1002/qj.652.
——, H. Li, T. Miyoshi, S.-C. Yang, and J. Ballabrera-Poy, 2007: 4-D-Var or ensemble Kalman filter? Tellus A Dyn. Meteorol. Oceanogr., 59, 758–773, doi:10.1111/j.1600-0870.2007.00261.x.
Kleist, D. T., 2012: An evaluation of hybrid variational-ensemble data assimilation for the NCEP GFS. University of Maryland, College Park, 149pp.
Kleist, D. T., and K. Ide, 2015: An OSSE-based evaluation of hybrid variational-ensemble data assimilation for the NCEP GFS. Part I: System description and 3D-hybrid results. Mon.Wea. Rev., 143, 433–451, doi:10.1175/MWR-D-13-00351.1.
Kondo, K., and T. Miyoshi, 2016: Impact of removing covariance localization in an ensemble Kalman Filter: Experiments with 10 240 members using an intermediate AGCM. Mon.Wea. Rev., 144, 4849–4865, doi:10.1175/MWR-D-15-0388.1.
Kong, R., M. Xue, and C. Liu, 2018: Development of a Hybrid En3DVar Data Assimilation System and Comparisons with 3DVar and EnKF for Radar Data Assimilation with Observing System Simulation Experiments. Mon.Wea. Rev., 146, 175–198, doi:10.1175/MWR-D-17-0164.1.
Kueh, M.-T., C.-Y. Huang, S.-Y. Chen, S.-H. Chen, and C.-J. Wang, 2009: Impact of GPS Radio Occultation Refractivity Soundings on a Simulation of Typhoon Bilis (2006) upon Landfall. Terr. Atmos. Ocean. Sci., 20, 115, doi:10.3319/TAO.2008.01.21.03(F3C).
Kuo, Y.-H., T.-K. Wee, S. Sokolovskiy, C. Rocken, W. Schreiner, D. Hunt, and R. .Anthes, 2004: Inversion and Error Estimation of GPS Radio Occultation Data. J. Meteorol. Soc. Japan, 82, 507–531, doi:10.2151/jmsj.2004.507.
Kuo, Y. H., W. S. Schreiner, J. Wang, D. L. Rossiter, and Y. Zhang, 2005: Comparison of GPS radio occultation soundings with radiosondes. Geophys. Res. Lett., 32, 1–4, doi:10.1029/2004GL021443.
Kursinski, E. R., G. A. Hajj, J. T. Schofield, R. P. Linfield, and K. R. Hardy, 1997: Observing Earth’s atmosphere with radio occultation measurements using the Global Positioning System. J. Geophys. Res. Atmos., 102, 23429–23465, doi:10.1029/97JD01569.
Lange, H., and G. C.Craig, 2014: The impact of data assimilation length scales on analysis and prediction of convective storms. Mon.Wea. Rev., 142, 3781–3808, doi:10.1175/MWR-D-13-00304.1.
VanLeeuwen, P. J., 2009: Particle filtering in geophysical systems. Mon.Wea. Rev., 137, 4089–4114, doi:10.1175/2009MWR2835.1.
Leon, S. J., Å. Björck, and W. Gander, 2013a: Gram-Schmidt orthogonalization: 100 years and more. Numer. Linear Algebr. with Appl., 20, 492–532, doi:10.1002/nla.1839. http://doi.wiley.com/10.1002/nla.1839.
——, ——, and——, 2013b: Gram-Schmidt orthogonalization: 100 years and more. Numer. Linear Algebr. with Appl., 20, 492–532, doi:10.1002/nla.1839.
Lin, K.-J., S.-C. Yang, and S. S.Chen, 2018: Reducing TC position uncertainty in ensemble data assimilation and prediction system: A Case Study of Typhoon Fanapi (2010). Weather Forecast., 33, 561–582, doi:10.1175/waf-d-17-0152.1.
Lorenc, A. C., 2003: The potential of the ensemble Kalman filter for NWP - A comparison with 4D-Var. Q. J. R. Meteorol. Soc., 129, 3183–3203, doi:10.1256/qj.02.132.
——, 2013: Recommended Nomenclature for EnVar Data Assimilation Methods. WGNE Blue B. Res. Act. Atmos. Ocean. Model.,.
Ménétrier, B., and T. Auligné, 2015: Optimized Localization and Hybridization to Filter Ensemble-Based Covariances. Mon.Wea. Rev., 143, 3931–3947, doi:10.1175/MWR-D-15-0057.1.
Millan, R. M., and Coauthors, 2019: Small satellites for space science: A COSPAR scientific roadmap. Adv. Sp. Res., 64, 1466–1517, doi:10.1016/j.asr.2019.07.035.
Minamide, M., and F. Zhang, 2017: Adaptive observation error inflation for assimilating all-Sky satellite radiance. Mon.Wea. Rev., 145, 1063–1081, doi:10.1175/MWR-D-16-0257.1.
Mitchell, H. L., and P. L. Houtekamer, 2000: An Adaptive Ensemble Kalman Filter. Mon.Wea. Rev., 128, 416, doi:10.1175/1520-0493(2000)128<0416:AAEKF>2.0.CO;2.
Miyoshi, T., and K. Kondo, 2013: A multi-scale localization approach to an ensemble Kalman filter. Sci. Online Lett. Atmos., 9, 170–173, doi:10.2151/sola.2013-038.
——, ——, and T. Imamura, 2014: The 10,240-member ensemble Kalman filtering with an intermediate AGCM. Geophys. Res. Lett., 41, 5264–5271, doi:10.1002/2014GL060863.
Morss, R. E., 1999: Adaptive observations: Idealized sampling strategies for improving numerical weather prediction. Ph.D. thesis, Massachusetts Institute of Technology, 225pp.
Parrish, D. F., and J. C.Derber, 1992: The National Meteorological Center’s spectral statistical- interpolation analysis system. Mon.Wea. Rev., 120, 1747–1763, doi:10.1175/1520-0493(1992)120<1747:TNMCSS>2.0.CO;2.
Penny, S. G., 2014: The hybrid local ensemble transform Kalman filter. Mon.Wea. Rev., 142, 2139–2149, doi:10.1175/MWR-D-13-00131.1.
——, 2017: Mathematical foundations of hybrid data assimilation from a synchronization perspective. Chaos, 27, doi:10.1063/1.5001819.
——, and T. Miyoshi, 2016: A local particle filter for high-dimensional geophysical systems. Nonlinear Process. Geophys., 23, 391–405, doi:10.5194/npg-23-391-2016.
——, D. W. Behringer, J. A. Carton, and E. Kalnay, 2015: A Hybrid Global Ocean Data Assimilation System at NCEP. Mon.Wea. Rev., 143, 4660–4677, doi:10.1175/MWR-D-14-00376.1.
Pires, C., R. Vautard, and O. Talagrand, 1996: On extending the limits of variational assimilation in nonlinear chaotic systems. Tellus A Dyn. Meteorol. Oceanogr., 48, 96–121, doi:10.3402/tellusa.v48i1.11634.
Poli, P., P. Moll, D. Puech, F. Rabier, and S. B. Healy, 2009: Quality Control , Error Analysis , and Impact Assessment of FORMOSAT-3/COSMIC in Numerical Weather Prediction. Terr. Atmos. Ocean. Sci., 20, 101–113, doi:10.3319/TAO.2008.01.21.02(F3C)1.
Poli, P., S. B. Healy, and D. P. Dee, 2010: Assimilation of Global Positioning System radio occultation data in the ECMWF ERA-Interim reanalysis. Q. J. R. Meteorol. Soc., 136, 1972–1990, doi:10.1002/qj.722.
Satterfield, E. A., D. Hodyss, D. D. Kuhl, and C. H. Bishop, 2018: Observation-Informed Generalized Hybrid Error Covariance Models. Mon.Wea. Rev., 146, 3605–3622, doi:10.1175/MWR-D-18-0016.1.
Schreiner, W. S., J. P. Weiss, R. A. Anthes, J. Braun, V. Chu, J. Fong, D. Hunt, Y.‐H. Kuo, T. Meehan, W. Serafino, J. Sjoberg, S. Sokolovskiy, E. Talaat, T.K. Wee, Z. Zeng, 2020: COSMIC‐2 radio occultation constellation: First results. Geophys. Res. Lett., 47, e2019GL086841. https://doi.org/10.1029/2019GL086841.
Skamarock, W. C., J. B. Klemp, J. Dudhia, D. O. Gill, D. M. Barker, M. G. Duda, X.‐Y. Huang, W. Wang, and J. G. Powers, 2008: A description of the advanced research WRF version 3, NCAR Tech. Note NCAR/TN–475+STR ,USA, 113 pp. doi:10.5065/D68S4MVH.
Snyder, C., T. M. Hamill, and S. B. Trier, 2003: Linear evolution of error covariances in a quasigeostrophic model. Mon.Wea. Rev., 131, 189–205, doi:10.1175/1520-0493(2003)131<0189:LEOECI>2.0.CO;2.
Storto, A., P. Oddo, A. Cipollone, I. Mirouze, and B. Lemieux-Dudon, 2018: Extending an oceanographic variational scheme to allow for affordable hybrid and four-dimensional data assimilation. Ocean Model., 128, 67–86, doi:10.1016/j.ocemod.2018.06.005.
Tavolato, C., and L.Isaksen, 2015: On the use of a Huber norm for observation quality control in the ECMWF 4D-Var. Q. J. R. Meteorol. Soc., 141, 1514–1527, doi:10.1002/qj.2440.
Toth, Z., and E. Kalnay, 1993: Ensemble Forecasting at NMC: The Generation of Perturbations. Bull. Am. Meteorol. Soc., 74, 2317–2330, doi:10.1175/1520-0477(1993)074<2317:efantg>2.0.co;2.
Waller, J. A., D. Simonin, S. L. Dance, N. K. Nichols, and S. P. Ballard, 2016: Diagnosing observation error correlations for doppler radar radial winds in the met office UKV model using observation-minus-background and observation-minus-analysis statistics. Mon.Wea. Rev., 144, 3533–3551, doi:10.1175/MWR-D-15-0340.1.
Wang, X., C. Snyder, and T. M. Hamill, 2007: On the theoretical equivalence of differently proposed ensemble - 3DVAR hybrid analysis schemes. Mon.Wea. Rev., 135, 222–227, doi:10.1175/MWR3282.1.
——, D. Parrish, D. Kleist, and J. Whitaker, 2013: GSI 3DVar-Based Ensemble–Variational Hybrid Data Assimilation for NCEP Global Forecast System: Single-Resolution Experiments. Mon.Wea. Rev., 141, 4098–4117, doi:10.1175/MWR-D-12-00141.1.
Ware, R., and Coauthors, 1996: GPS sounding of the atmosphere from low earth orbit: Preliminary results. Bull. Am. Meteorol. Soc., 77, 19–40, doi:10.1175/1520-0477(1996)077<0019:GSOTAF>2.0.CO;2.
Weston, P. P., W. Bell, and J. R. Eyre, 2014: Accounting for correlated error in the assimilation of high-resolution sounder data. Q. J. R. Meteorol. Soc., 140, 2420–2429, doi:10.1002/qj.2306.
Wu, P., S. Yang, C. Tsai, and H. Cheng, 2020: Convective-scale sampling error and its impact on the ensemble radar data assimilation system: A case study of heavy rainfall event on 16th June 2008 in Taiwan. Mon. Wea. Rev., in press, doi:10.1175/MWR-D-19-0319.1.
Yang, S.-C., E. Kalnay, B. Hunt, and N.E. Bowler, 2009a: Weight interpolation for efficient data assimilation with the Local Ensemble Transform Kalman Filter. Q. J. R. Meteorol. Soc., 135, 251–262, doi:10.1002/qj.353.
——, S.-H. Chen, S.-Y. Chen, C.-Y. Huang, and C.-S. Chen, 2014: Evaluating the Impact of the COSMIC RO Bending Angle Data on Predicting the Heavy Precipitation Episode on 16 June 2008 during SoWMEX-IOP8. Mon.Wea. Rev., 142, 4139–4163, doi:10.1175/MWR-D-13-00275.1.
——, ——, K. Kondo, T. Miyoshi, Y.-C. Liou, Y.-L. Teng, and H.-L. Chang, 2017: Multilocalization data assimilation for predicting heavy precipitation associated with a multiscale weather system. J. Adv. Model. Earth Syst., 9, 1684–1702, doi:10.1002/2017MS001009.
——, M. Corazza, A. Carrassi, E. Kalnay, and T. Miyoshi, 2009b: Comparison of local ensemble transform Kalman filter, 3DVAR, and 4DVAR in a quasigeostrophic model. Mon.Wea. Rev., 137, 693–709, doi:10.1175/2008MWR2396.1.
——, E. Kalnay, and B. Hunt, 2012a: Handling nonlinearity in an ensemble Kalman filter: Experiments with the three-variable lorenz model. Mon.Wea. Rev., 140, 2628–2646, doi:10.1175/MWR-D-11-00313.1.
——, ——, and T. Miyoshi, 2012b: Accelerating the EnKF spinup for typhoon assimilation and prediction. Weather Forecast., 27, 878–897, doi:10.1175/WAF-D-11-00153.1.
——, ——, and T. Enomoto, 2015: Ensemble singular vectors and their use as additive inflation in EnKF. Tellus, Ser. A Dyn. Meteorol. Oceanogr., 67, 1–20, doi:10.3402/tellusa.v67.26536.
Zhang, F., Y. Weng, J. A. Sippel, Z. Meng, and C. H. Bishop, 2009a: Cloud-resolving hurricane initialization and prediction through assimilation of doppler radar observations with an ensemble Kalman filter. Mon.Wea. Rev., 137, 2105–2125, doi:10.1175/2009MWR2645.1.
——, M. Zhang, and J. A.Hansen, 2009b: Coupling ensemble Kalman filter with four-dimensional variational data assimilation. Adv. Atmos. Sci., 26, 1–8, doi:10.1007/s00376-009-0001-8.
——, ——, and J. Poterjoy, 2013: E3DVar: Coupling an ensemble kalman filter with three-dimensional variational data assimilation in a limited-area weather prediction model and comparison to E4DVar. Mon.Wea. Rev., 141, 900–917, doi:10.1175/MWR-D-12-00075.1.
Zou, X., H. Liu, R. A. Anthes, H. Shao, J. C. Chang, and Y. J. Zhu, 2004: Impact of CHAMP radio occultation observations on global analysis and forecasts in the absence of AMSU radiance data. J. Meteorol. Soc. Japan, 82, 533–549, doi:10.2151/jmsj.2004.533. |