博碩士論文 107223010 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:137 、訪客IP:3.144.249.225
姓名 蔣皓哲(Hao-Zhe Jiang)  查詢紙本館藏   畢業系所 化學學系
論文名稱 具咪唑鹽之兩性離子交換膜的開發與製備
(Development and preparation of amphoteric ion exchange membrane with imidazolium group)
相關論文
★ Cycloiptycene分子之合成與自組裝行為之研究★ 含二噻吩蒽[3,2-b:2′,3′-d]噻吩單元之敏化染料太陽能電池
★ 以有機磷酸修飾電極表面功函數及對有機發光元件效率影響研究★ 有機薄膜電晶體材料三併環及四併環噻吩衍生物之開發
★ 具交聯結構之磺酸化聚馬來醯亞胺高分子質子傳導膜之開發與製備★ 有機薄膜電晶體材料苯三併環噻吩及苯四併環噻吩衍生物之開發
★ 有機薄膜電晶體高分子材料併環噻吩系列之開發★ 有機薄膜電晶體材料及可溶性有機薄膜電晶體材料衍生物之開發
★ 有機薄膜電晶體材料三併環及四併環噻吩衍生物之開發★ 具交聯結構之苯乙烯-馬來醯亞胺 接枝型高分子質子傳導膜之開發與製備
★ 有機薄膜電晶體材料苯三併環噻吩及可溶性聯噻吩衍生物之開發★ 可溶性有機薄膜電晶體材料三併環及四併環噻吩衍生物之開發
★ 含benzotriazole 之D-π-A 共軛形光敏染料及其染料太陽能電池★ 有機薄膜電晶材料苯併環噻吩和可溶性硫醚噻吩衍生物之開發
★ 具咪唑鹽團聯高分子之陰離子傳導膜的開發與製備★ 可溶性有機薄膜電晶體材料三併環 及四併環噻吩衍生物之開發
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   至系統瀏覽論文 (2025-7-23以後開放)
摘要(中) 本論文以開發含有親水端之聚合單體,用以製備兩系列具親水端之兩性離子高分子。
第一系列為兩性離子交換膜 PNB-CImS 的開發。首先製備出親水端單體 NB-CIm-4 與疏水端單體 NB-Hex,然後將兩者以不同比例進行 ROMP 聚合,製備出 PNB-CIm,之後將此高分子和 1,3-propansultone 反應,使其外接一個磺酸基團,得到一個同時具有正負電荷的高分子- PNB-CImS,當親水端比例為 50% 時,膜材的膨脹比及吸水率僅有 7.0% 和 8.9%,當親水端比例為 60% 時,目前導電度已達 0.019 S cm-1。
第二系列為兩性離子交換膜 PNB-BImS ,此系列為 PNB-CImS 系列的改良,經由上一個系列所得的成果,我們利用離子基團的數量、更密集的離子基團所成更大的離子通道而增加其導電度。成功合成新的親水端單體 Im-Cl 和 Im-ClS 用來和高分子 PNB-CIm 合成目標高分子 PNB-BImS ,並且在親水端比例為 40% 時可以順利成膜,導電度達 0.038 S cm-1 。
摘要(英) In this study, two new series of hydrophilic monomers for preparation of amphoteric polymer for ion exchange membranes were developed.
The first series is the development of amphoteric ion exchange membrane PNB-CImS. First, monomer NB-CIm-4 and NB-Hex were prepared, and then the two monomers were subjected to ROMP polymerization in different mole ratios to prepare ionic PNB-CIm. The latter was treated with 1,3-propansultone to obtain a new ionic polymer, which with both positive and negative charges on the polymer. Membrane prepared by 50% hydrophilic ratio ionic polymer (PNB-CImS) exhibited 7.0% membrane swelling ratio and 8.9% water absorption ratio. Membrane prepared by 60% hydrophilic ratio ionic polymer (PNB-CImS) exhibited 0.031 S cm-1 ion conductivity.
The second series is the development of amphoteric ion exchange membrane PNB-BImS. This series is an improvement of the PNB-CImS series. As expect, we increase the number and density of ionic groups to increase its ion conductivity. The monomer Im-Cl and Im-ClS have been successfully synthesized to prepare PNB-BImS. Membrane prepared by 40% hydrophilic ratio ionic polymer (PNB-BImS) exhibited 0.038 S cm-1 ion conductivity.
關鍵字(中) ★ 離子交換膜 關鍵字(英)
論文目次 中文摘要 ................................ ................................ ................................ .. i
Abstract ................................ ................................ ................................ .. ii
謝誌 ................................ ................................ ................................ .. iii
重要名詞縮寫對照表 重要名詞縮寫對照表 重要名詞縮寫對照表 重要名詞縮寫對照表 ................................ ................................ ............ ix
第一章 緒論 ................................ ................................ ............................ 1
1-1 前言 ................................ ................................ ............................... 2
1-2 燃料電池簡介 ................................ ................................ ............... 4
1-3 燃料電池種類 燃料電池種類 燃料電池種類 ................................ ................................ ............... 9
1-3-1 質子交換膜燃料電池 質子交換膜燃料電池 質子交換膜燃料電池 (PEMFCs) ................................ 10
1-3-2 磷酸燃料電池 磷酸燃料電池 (PAFCs) ................................ ................ 12
1-3-3 固態氧化物燃料電池 固態氧化物燃料電池 固態氧化物燃料電池 (SOFCs) ................................ ... 13
1-3-4 熔融碳酸 鹽燃料電池 鹽燃料電池 (MCFCs) ................................ .. 15
1-3-5 鹼性燃料電池 鹼性燃料電池 (AFCs) ................................ .................. 16
1-3-6 固態鹼性燃料電池 固態鹼性燃料電池 固態鹼性燃料電池 (SAFCs) ................................ ....... 17
第二章 文獻回顧 ................................ ................................ .................. 22
2-1 陰離子交換膜簡介 ................................ ................................ ..... 23
2-2 陰離子交換膜種類 ................................ ................................ ..... 24
2-3 陰離子交換基團的穩定性 陰離子交換基團的穩定性 陰離子交換基團的穩定性 陰離子交換基團的穩定性 ................................ ......................... 40
2-4 陽離子交換膜簡介 陽離子交換膜簡介 陽離子交換膜簡介 ................................ ................................ ..... 46
2-5 陽離子交換膜種類 陽離子交換膜種類 陽離子交換膜種類 ................................ ................................ ..... 47
2-6 陽離子交換基團的穩定性 陽離子交換基團的穩定性 陽離子交換基團的穩定性 陽離子交換基團的穩定性 ................................ ......................... 60
2-7雙極離子交換膜 雙極離子交換膜 ................................ ................................ .......... 63
2-8 兩性離子交換膜 兩性離子交換膜 兩性離子交換膜 ................................ ................................ ......... 65
2-9 研究動機 ................................ ................................ ..................... 72
第三章 實驗與 儀器 ................................ ................................ .............. 77
3-1 實驗藥品 ................................ ................................ ..................... 78
3-1-1 實驗所使用之化學藥品 實驗所使用之化學藥品 實驗所使用之化學藥品 ................................ ................ 78
3-1-2 藥品的純化 藥品的純化 ................................ ................................ .... 80
3-1-3 實驗所使用之溶劑 實驗所使用之溶劑 實驗所使用之溶劑 ................................ ........................ 81
3-1-4 溶劑除水 ................................ ................................ ........ 81
3-2 實驗儀器及技術原理 實驗儀器及技術原理 實驗儀器及技術原理 ................................ ................................ . 82
3-2-1 核磁共振光譜儀 核磁共振光譜儀 核磁共振光譜儀 (Nuclear Magnetic Resonance); Bruker AVANCE 300 / 500MHz ................................ .... 82
3-2-2 熱重分析儀 熱重分析儀 (Thermal Gravimetric Analysis, TGA); Mettler Toledo TGA/SDTA 851 ................................ ..... 82
3-2-3 交流阻抗儀 交流阻抗儀 (Alternating Current Impedance);Autolab Pgstat 30 AUT system ................................ .................... 83
3-2-4 吸水膨潤比 吸水膨潤比 (Water Uptake) 與尺寸變化率 與尺寸變化率 (Swelling
Ratio) ................................ ................................ .............. 85
3-2-5 離子交換容量 離子交換容量 (Ion Exchange Capacity, IEC) ............. 86
3-2-6 化學穩定性 化學穩定性 (Chemical stability) ................................ .. 87
3-3 高分子合成後處理 高分子合成後處理 高分子合成後處理 ................................ ................................ ..... 87
3-3-1 高分子薄膜的製備 高分子薄膜的製備 高分子薄膜的製備 ................................ ........................ 87
3-3-2 高分子薄膜的鹼化 高分子薄膜的鹼化 高分子薄膜的鹼化 ................................ ........................ 88
3-3-3 高分子薄膜的酸化 高分子薄膜的酸化 高分子薄膜的酸化 ................................ ........................ 88
3-4 合成步驟 ................................ ................................ ..................... 85
3-4-1 6-bromo-1-hexene (1) 的合成 ................................ ....... 88
3-4-2 NB-Br-4 (2) 的合成 ................................ ....................... 89
3-4-3 NB-CIm-4 (3) 的合成 ................................ .................... 90
3-4-4 NB-Hex (4) 的合成 ................................ ....................... 91
3-4-5 NB- CImS (5) 的合成 ................................ ..................... 92
3-4-6 R-PNB-CIm-50、60、70 (6) 的合成 ........................... 93
3-4-7 R-PNB-CImS-50、60、70 (7) 的合成 .......................... 94
3-4-8 BIm-6 (8) 的合成 ................................ ........................... 95
3-4-9 NB-P (9) 的合成 的合成 ................................ ............................ 96
3-4-10 Ims (10) 的合成 的合成 ................................ ............................ 96
3-4-11 PNB-P-Im-50 (11) 的合成 ................................ ........... 97
3-4-12 Im-Cl (12) 的合成 ................................ ....................... 98
3-4-12 ImS-Cl (13) 的合成 ................................ ...................... 99
第四章 結果與討論 ................................ ................................ ............ 101
4-1 PNB-CImS 系列之合成及討論 系列之合成及討論 系列之合成及討論 ................................ ................ 102
4-1-1 PNB-CIm-4 的 1H 核磁共振光譜結構探討 核磁共振光譜結構探討 核磁共振光譜結構探討 核磁共振光譜結構探討 ............. 103
4-1-2熱穩定性 (Thermal Stability) ................................ ...... 105
4-1-3 離子交換容量 離子交換容量 (Ion Conductivity) .............................. 106
4-1-4 吸水膨潤比 吸水膨潤比 (W.U.) 與尺寸變化率 與尺寸變化率 與尺寸變化率 (S.R.) ............... 107
4-1-5 離子導電度 離子導電度 (Ion Conductivity) ................................ .. 108
第五章 結論 ................................ 111
參考文獻 ................................ .............................. 114
附錄 ................................ ................................ 121
參考文獻 1 (a) Grove, W. R. Phil. Mag. 1839, 15, 287.
(b) Grove, W. R. Phil. Mag. 1839, 14, 127.
(c) Grove, W. R. Phil. Mag. 1842, 21, 417.
2 Couture, G. Alaaeddine, A. Boschet, F. Ameduri, B. Prog. Polym. Sci. 2011, 36, 1521.
3 圖片來源 : 金華圖書 -燃料電池 .
4 圖片來源 : 金華圖書 -燃料電池 .
5 (a) Huang, X. Reifsnider, K. Mod. Aspect Electroc. 2010, 49, 1.
(b) Javaid, S. M. Z. Mater. Sci. Forum. 2010, 657, 88.
(c) Maiyalagan, T. Pasupathi, S. Mater. Sci. Forum. 2010, 657, 143.
(d) Miller, M. Bazylak, A. J. Power Sources 2011, 196, 601.
6 Ticianelli, E. A. Derouin, C. R. Redondo, A. Srinivasan, S. J. Electrochem. Soc., 1988, 135, 9.
7 Ram Devanathan. Energy Environ. Sci., 2008, 1, 101–119.
8 Al-Saleh, M. A.; Gultekin, S.; Al-Zakri, A. S.; Celiker, H. J. Appl. Electrochem. 1994, 24, 575.
9 (a) Wang, Y.; Li, L.; Hu, L.; Zhuang, L.; Lu, J. T.; Xu, B. Q. Electrochem. Commun. 2003, 5, 662.
(b) Tripkovic, A. V.; Popovic, K. D.; Grgur, B. N.; Blizanac, B.; Ross, P. N.; Markovic, N. M. Electrochim. Acta 2002, 47, 3707.
(c) Tripkovic, A. V.; Popovic, K. D.; Lovic, J. D.; Jovanovic, V. M.; Kowal, A. J. Electroanal. Chem. 2004, 572,119.
(d) Prabhuram, J.; Manoharan, R. J. Power Sources 1998, 74, 54.
10 (a) Varcoe, J. R.; Slade, R. C. T.; Yee, E. L. H. Chem. Commun. 2006, 1428.
(b) Matsuoka, K.; Iriyama, Y.; Abe, T.; Matsuoka, M.; Ogumi, Z. J. Power Sources, 2005, 150, 27.
11 (a) Varcoe, J. R.; Slade, R. C. T. Fuel Cells 2005, 5, 187.
(b) Tripkovic, A. V.; Popovic, K. D.; Grgur, B. N.; Blizanac, B.; Ross, P. N.; Markovic, N. M. Electrochim. Acta 2002, 47, 3707.
12. Luea, S. J. Wanga, W. T. Mahesha, K. P. O. Yang, C. C. J. Power Sources 2010, 195, 7991.
13 Amendola, S. C.; Onnerud, P.; Kelly, M. T.; Petillo, P. J.; Sharp-Goldman, S. L.; Binde,r M. J. Power Sources 1999, 84, 130.
14 (a) Asazawa, K.; Yamada, K.; Tanaka, H.; Oka, A.; Taniguchi, M.; Kobayashi, T. Angew. Chem. Int. Ed. 2007, 46, 8024.
(b) Asazawa, K.; Sakamoto, T.; Yamaguchi, S.; Yamada, K.; Fujikawa,H.; Tanaka, H.; Oguro, K. J. Electrochem. Soc. 2009, 156, B509.
15 (a) Surya Prakash, G. K.; Krause, F. C.; Viva, F. A.; Narayanan, S. R.; Olah, G. A. J. Power Sources, 2011, 196, 7967.
(b) Matsuoka, K.; Iriyama, Y.; Abe, T.; Matsuoka, M.; Ogumi, Z. R. J. Power Sources 2005, 150, 27.
(c) Asazawa, K.; Yamada, K.; Tanaka, H.; Oka, A.; Taniguchi, M.; Kobayashi, T. Angew. Chem., Int. Ed. 2007, 46, 8024.
(d) Asazawa, K.; Sakamoto, T.; Yamaguchi, S.; Yamada, K.; Fujikawa,H.; Tanaka, H.; Oguro, K. J. Electrochem. Soc. 2009, 156, B509.
(e) Matsuoka, K.; Iriyama, Y.; Abe, T.; Matsuoka, M.; Ogumi, Z. J. Power Sources 2005, 150, 27.
(f) Yu, E. H.; Scott, K.; J. Power Sources 2004, 137, 248.
16 Varcoe, J. R.; Slade, R. C. T.; Yee, E. L. H.; Poynton, S. D.; Driscoll, D. J.; Apperley, D. C. Chem. Mater. 2007, 19, 2686.
17 Hibbs, M. R.; Fujimoto, C. H.; Cornelius ,C. J. Macromolecules 2009, 42, 8316.
18 Wanga, G.; Wenga, Y.; Chu, D.; Xie, D.; Chen, R. J. Membr. Sci. 2009, 326, 4.
19 Zhao, Z.; Wang, J.; Li, S.; Zhang, S. J. Power Sources 2011, 196, 4445.
20. Tanaka, M.; Fukasawa, K.; Nishino, E.; Yamaguchi, S.; Yamada, K.; Tanaka, H.; Bae, B.; Miyatake, K.; Watanabe, M. J. Am. Chem. Soc. 2011, 133, 10646.
21 Li, N.; Zhang, Q.; Wang, C.; Lee, Y. M.; Guiver, M. D. Macromolecules 2012, 45, 2411.
22 Wang, J.; Li, S.; Zhang, S. Macromolecules 2010, 43, 3890.
23 Zhang, F.; Zhang, H.; Qu, C. J. Mater. Chem., 2011, 21, 12744.
24 Cao, Y.-C.; Wang, X.; Mamlouk, M.; Scott, K. J. Mater. Chem. 2011, 21, 12910.
25 Li, W.; Fang, J.; Lv, M.; Chen, C.; Chi, X.; Yang, Y.; Zhang, Y. J. Mater. Chem., 2011, 21, 11340.
26 Qiu, B.; Lin, B.; Qiu, L.; Yan, F. J. Mater. Chem. 2012, 22, 1040.
27 Clark, T. J. Roberton, N. J. Kostalik IV, H. A. Lobkovsky, E. B. Mutolo, P. F. Abruna, H. D.; Coates, G. W. J. Am. Chem. Soc. 2009, 131, 12888.
28 Roberton, N. J. Kostalik IV, H. A. Clark, T. J. Mutolo, P. F. Abruna, H. D.; Coates, G. W. J. Am. Chem. Soc. 2010, 132, 3400.
29 Noonan, K. J. T. Hugar, K. M. Kostalik IV, H. A. Lobkovsky, E. B. Abruna, H. D.; Coates, G. W. J. Am. Chem. Soc. 2012, 134, 18161.
30 Michael R., H. Cy H., F. Christopher J., C. Macromolecules 2009, 42, 8316.
31 Wang, G. Weng, Y. Zhao, J. Chen, R. Xie, D. Journal of Applied Polymer Science 2009, 112, 721.
32 Zhang, F.; Zhang, H.; Qu, C. J. Mater. Chem. 2011, 21, 12744.
33 Manabu, T. Keita, F. Eriko, N. Susumu, Y. Koji, Y. Hirohisa, T. Byungchan, B.
Kenji, M. Masahiro, W. J. Am. Chem. Soc. 2011, 133, 10646.
34 Li, C. Wang, S. Wang, W. Wie, X. Lu, Y. Deng, C. International journal of Hydrogen Energy 2013, 38, 11038.
35 X. Li, Y. YU, Q. Liu, Y. Meng, International journal of Hydrogen Energy 2013, 38, 11038.
36 Clark, T. J. Robertson, N. J. Kostalik IV, H. A. Lobkovsky, E. B. Mutolo, P. F. Abruna, H. D. Coates, G. W. J. Am. Chem. Soc. 2009, 131, 1288.
37 Robertson, N. J. Kostalik IV, H. A. Clark, T. J. Mutolo, P. F. Abruna, H. D. Coates, G. W. J. Am. Chem. Soc. 2010, 132, 3400.
38 Noonan, K. J. Hugar, K. M. Kostalik, H. A. Lobkovsky, E. B. Abruna, H. D. Coates, G. W. J. Am. Chem. Soc. 2012, 134, 18161.
39 Zhao, Y. Feng. L, Gao.J. Zhao, Y. Wang, S. Xie, X. International journal of Hydrogen Energy 2016, 41, 16264-16274
40 Zhu, L. Yu, X. Hickner, M. A. Journal of Power Source 2017, 375, 1-9.
41 Dong, X. Lv, D. Zheng, J. Xue, B. Bi, W. Li, S. Zhang, S. Journal of Membrane Science 2017, 535, 301-311.
42 Wang, J.; Li, S.; Zhang, S. Macromolecules 2010, 43, 3890.
43 Cope, A. C.; Mehta, A. S. J. Am. Chem. Soc. 1963, 85, 1949.
44 (a) Chempath, S.; Boncella. J. M.; Pratt, L.R.; Henson, N.; Pivovar, B.S. J. Phys. Chem. C 2010, 114, 11977.
(b) Chempath. S.; Einsla, B.R.; Pratt, L.R.; Macomber, C.S.; Boncella, J. M.; Rau, J.A.; Pivovar, B.S. J. Phys. Chem. C. 2008, 112, 3179.
45 Lin, B. Dong, H. Li, Y. Si, Z. Gu, F. Yan, F. Chem. Mater. 2013, 25, 1858.
46 W. G. Grot, US Pat., 3718627, 1968.
47 K. A. Mauritz; R. B. Moore , Chem. Rev., 2004, 104 , 4535 -4586.
48 C. Stone, A. R. Steck and R. D. Lousenberg, US Pat., 5602185, 1997..
49 P. Zschocke; D. Quellmalz J. Membr. Sci. 1985, 22, 325-332.
50 Chalida, K.; Bradley, P. L.; Lu, G. Q. M.; Wang, L. Z. J. Membr. Sci. 1985, 22, 325-332.
51 Wang, F.; Michael, H.; Kim, Y. S.; Thomas, A. Z.; James, E. M. J. Membr. Sci. 2002, 197, 231-242.
52 Y. Woo.et al. J. Membr. Sci., 2003, 220, 31–45.
53 Li, L.; Zhang, J.; Wang, Y. X. J. Membr. Sci. 2003, 226, 159-167.
54 Xing, P. X. Gilles, P. R. Michael, D. G. Serguei, D. M. Wang, K. Serge, K. J. Membr. Sci. 2004, 229, 95-106.
55 Yang, S.; Gong, C.; Guan, R.; Zou, H.; Dai, H. Polym. Adv. Technol. 2006, 17, 360–365.
56 Wang, K. L.; Yang, L.; Wei, W. X.; Zhang, L.; Chang, G. J. J. Membr. Sci. 2018, 549, 23-27..
57 Xavier, G.; Mustapha, E. H.; Deborah, J. J.; Jacques, R. Solid State Ionics, 1997, 97, 323-331.
58 Pietro. S. Francesco, L. Antonino, S. A. Enza, P. Vincenzo, A. J. Membr. Sci. 2001, 188, 71-78.
59 Yoshitsugu, S. Per, E. Daniel, S. J. Electrochem. Soc. 1996, 143, 1254-1259
60 Michael R., H. Cy H., F. Christopher J., C. Macromolecules 2009, 42, 8316.
61 A. Bozkurt W. H. Meyer Solid State Ionics. 2001, 138, 259-265.
62 Li, L. Zhang, J. Wang, Y. X. J. Membr. Sci. 2003, 226, 159-167.
63 Li, L. Wang, Y. X. J. Membr. Sci. 2005, 246, 167-172.
64 He, R. G. Li, Q. F. Anders, B. Jensen, J. O. Bjerrum, N. J. J. Membr. Sci. 2006, 277, 38-45.
65 Yang, S. F. Gong, C. L. Zou, H. Dai, Hua. Polym. Adv. Technol. 2006, 17, 360-365.
66 Chen, S. W. Yin, Y. Hidetoshi, K. Ken-Ichi, O. J. Polym. Sci. Part A Polym. Chem. 2007, 45, 2797-2811.
67 Jens, W. Klaus-Dieter, K. Joachim, M. Arne, T. Adv. Mater. 2008, 20, 2595–2598.
68 Shen, C. H.; Jheng, L. C.; Hsu, S. L. C.; Wang, J. T. W. J. Mater. Chem. 2011, 21, 15660-15665.
69 Yang, J. S. Li, Q. F. Jenson, J. O. Pan, C. Lars N. C. Niels J.. B. He, R. H. J. Power Sources 2012, 205, 114-
70 Kazujiro, S. Yusuke, L. Manabu, T. Hiroyoshi, K. J. Mater. Chem. 2012, 22, 23767-23772.
71 Li, Xin. Chen, X. M. B. C. Benicewicz J. Power Sources 2013, 243, 796-804.
72 Yang, J. S. Li, Q. F. Lars, N. C. Jens, O. J. Pan, C. Niels, J. B. He,R. H. Adv. Energy Mater. 2013, 3, 622-630.
73 Simone, A. Davide, C. V. Sonia, D. B. Eliana, Q. Pier, P. R. Corrado, T. Piercario, M. J. Mater. Chem. A 2014, 2, 663-671.
74 Dong, X. Lv, D. Zheng, J. Xue, B. Bi, W. Li, S. Zhang, S. J. Membr. Sci. 2017, 535, 301-311.
75 Yang, J. S. Li, Q. F. Lars, N. C. Jens, O. J. Pan, C. Niels, J. B. He,R. H. J. Membr. Sci. 2018, 549, 23-27.
76 Wang, L. Liu, Z. R. Liu, Y. Wang, L. J. Membr. Sci. 2019, 583, 110-117.
77 Yang, J. S. Li, Q. F. Lars, N. C. Jens, O. J. Pan, C. Niels, J. B. He,R. H. J. Membr. Sci. 2018, 549, 23-27.
78 Borup, R. et al. Chem. Rev. 2007, 107, 3904-3951.
79 Cheng, X.; Zhang, J.; Tang, Y.; Song, C.; Shen, J.; Song, D.; Zhang, J. J. Power Sources 2007, 167, 25-31.
80 Gittlemen, C. S.; Coms, F. D.; Lai, Y. H. Polymer electrolyte fuel cell degrad. 2011, 2, 15-88.
81 Gubler, L.; Scherer, G. G. Polymer electrolyte fuel cell durability 2009, 6, 133-155.
82 Inaba, M.; Kinumoto, T.; Kiriake, M.; Umebayashi, R.; Tasaka, A.; Ogumi, Z. Electrochim. Acta 2006, 51, 5746-5753.
83 Guan, Y. S.; Pu, H. T.; Jin, M.; Chang, Z. H.; Wan, D. C. Fuel Cells 2010, 6, 973-982.
84 Okada, T.; Xie, G.; Meeg, M. Electrochim. Acta 1998, 43, 2141-2155.
121
85 Borup, R. et al. Chem. Rev. 2007, 107, 3904-3951.
86 Guan, Y. S.; Pu, H. T.; Jin, M.; Chang, Z. H.; Wan, D. C. Fuel Cells 2010, 6, 973-982.
87 Chang, Z. H.; Pu, H. T.; Wan, D. C.; Liu, L.; Yuan, J. J.; Yang, Z. L. Polym. Degrad. Stab. 2009, 94, 1206-1212.
88 H. Zhang, X. Yan, L. Gao, L. Hu, X. Ruan, W. Zheng, G. He, ACS Appl Mater Interfaces 2019, 11, 5003.
89 B. Jiang, L. Hu, X. Yan, J. Sun, L. Gao, Y. Dai, X. Ruan, G. He, Chinese Journal of Chemical Engineering 2020.
90 P. P. Sharma, A. Paul, D. N. Srivastava, V. Kulshrestha, ACS Omega 2018, 3, 9872.
91 X. Yan, C. Zhang, Z. Dong, B. Jiang, Y. Dai, X. Wu, G. He, ACS Applied Materials & Interfaces 2018, 10, 32247.
92 S. Kumar, M. Bhushan, V. K. Shahi, Journal of Power Sources 2020, 448, 227358
93 X. Yan, H. Zhang, Z. Hu, L. Li, L. Hu, Z. a. Li, L. Gao, Y. Dai, X. Jian, G. He, ACS Applied Materials & Interfaces 2019, 11, 44315.
94 Z. Dong, M. Di, L. Hu, L. Gao, X. Yan, X. Ruan, X. Wu, G. He, Journal of Membrane Science 2020, 608, 118179.
95 Qiu, B. Lin, B. Qiu, L. Yan, F. J. Mater. Chem. 2012, 22, 1040.
96 Toyota Central Research & Development Lab Inc, Japanese Published Patent Application No.2001-019723
97. Park, K. H. Twieg, R. J. Ravikiran, R. Rhodes, L. F. Shick, R. A. Yankelevich, D. Knoesne, A. Macromolecules 2004, 37, 5163.
指導教授 陳銘洲 審核日期 2020-7-29
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明