博碩士論文 107223003 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:131 、訪客IP:18.224.53.73
姓名 鄭尊豪(Tsun-Hao Cheng)  查詢紙本館藏   畢業系所 化學學系
論文名稱 以Ag和Cu金屬附載於碳化ZIF-8對環境汙染物的還原降解及二維和三維有序中孔洞碳材對亞甲藍之吸附實驗
相關論文
★ 具立方結構之中孔洞材料 SBA-1與 MCM-48 的合成與鑑定★ 具乙烯官能基之立方結構中孔洞材料 FDU-12 與 SBA-1 的合成與鑑定
★ 醇類及矽源於中孔洞 SBA-1 之合成研究★ 利用分子篩吸附有機硫化物 (噻吩及其衍生物) 與中孔洞 SBA-1 穩定性的研究
★ 矽氧烷改質有機無機複合式高分子電解質之結構鑑定與動力學研究★ 複合式高分子電解質之製備及特性分析暨具磷酸官能基之中孔洞矽材之固態核磁共振研究探討
★ 具不同重複單元之長鏈分枝型固 (膠) 態高分子電解質之合成設計及電化學研究★ 具不同特性單體之混摻型 有機無機固(膠)態高分子電解質 結構鑑定與動力學研究
★ 二維及三維具羧酸官能基中孔洞材料之合成、鑑定及蛋白質之吸附應用★ 三維結構具羧酸官能基大孔洞中孔洞材料之合成、鑑定與酵素固定及染料吸附應用
★ 具羧酸官能基之中孔洞材料於染料吸附 及製備奈米銀顆粒於催化之應用★ 中孔洞碳材於高效能鋰離子電池之應用
★ 具磷酸官能基之中孔洞材料的合成鑑定暨於鑭系金屬及毒物之吸附應用★ 以環氧樹酯合成具不同特性混摻型固 (膠) 態高分子電解質之結構鑑定及電化學研究
★ 三維具羧酸及胺基官能基大孔洞中孔洞材料之合成、鑑定與蛋白質吸附應用★ 超小奈米金屬固定於三維結構中孔洞材料中催化硼烷氨水解產氫及4-硝基苯酚還原之應用
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   至系統瀏覽論文 ( 永不開放)
摘要(中) 此論文分為兩個部分,第一部分針對環境汙染物4-Nitrophenol (4-NP)、2-Nitrophenol (2-NP)、Rhodamine B (RhB)、Methyl Orange (MO) 設計一系列催化劑來進行還原降解實驗。將廉價金屬銅輔以貴金屬銀做為反應活性中心,並以化學雙還原的方式將銀銅金屬附載於類沸石咪唑骨架衍生碳材料-8 (Carbonization of ZIF-8) 簡稱CZ-8。藉由調控不同金屬比例來達到最佳催化效果,其中Ag6Cu4對於硝基苯酚的還原速率最快,4-NP的還原速率可達96396.6 s-1gmetal-1;Ag2Cu8對於染料RhB的降解速率更達到151093.3 s-1gmetal-1。而以化學雙還原的方式還原金屬離子,其奈米尺寸大小5.59 - 11.03 nm之間。
第二部分中利用KIT-6及SBA-15做為硬模板合成了碳材CMK-5、CMK-8、CMK-9,在無修飾官能基的情況下對陽離子染料Methylene Blue (MB) 探討其吸附行為,並比較了第一部分的碳氮底材CZ-8。結果顯示擁有2382.4 m2/g高比表面積的CMK-9擁有此一系列中最大吸附量977 mg/g,並依Langmuir等溫吸附得知此一系列對於亞甲基藍 (Methylene blue, MB) 的吸附行為皆傾向於單層吸附。
摘要(英) There are two parts in my study. In the first part, environmental pollutions such like nitroaromatic compounds and dyes endangers the mother earth. This study chooses 4-nitrophenol and its structural isomer, 2-nitrophenol to represent nitro compound. There is a great deal of different metal nanoparticle, silver, nickel, etc., were used in reduction process. Combining a low-cost metal with noble metal is economical. Especially copper nanoparticle is an outstanding catalysis for nitro compound reduction. Silver/copper alloy nanoparticles are synthesized by using chemical reduction with aqueous solution of NaBH4 and NH3BH3 on carbonization of zeolitic imidazolate framework (CZ-8). The bimetal particle size on the CZ-8 are approximately between 5.59 and 11.03 nm. The catalysis activities of the AgxCuy@CZ-8 materials not only in the nitrophenol reduction but also in dye degradation such as rhodamine b (RhB), methyl orange (MO). And the results show that the most fastest sample to the nitrophenol reduction process and dye degradation process is Ag6Cu4, Ag8Cu2, respectively. They exhibits a high catalytic activity with the activity parameter of 96396.6 s-1gmetal-1 for 4-NP and 151093.3 s-1gmetal-1 for RhB.
The second part, we use mesoporous silica material, KIT-6 and SBA-15 as hard template to synthesize CMK-5, CMK-8 and CMK-9 and no functional group at CMK series. The experiment about methylene blue adsorption with mesoporous carbon material. In the results, there is the highest surface area, 2382.4 m2/g in characteristic of CMK-9. It showed an excellent adsorption capacity for 977 mg MB per gram adsorbent. The adsorption behavior of MB tend to single layer adsorption by Langmuir
adsorption isotherm theory.
關鍵字(中) ★ 硝基苯酚
★ 羅丹明B
★ 甲基橙
★ 亞甲基藍
★ 碳化類沸石咪唑骨架-8
★ 有序中孔洞碳材料
★ 吸附
★ 降解
關鍵字(英) ★ Nitrophenol
★ Rhodamine B
★ Methyl Orange
★ Methylene blue
★ Carbonization of ZIF-8
★ Ordered Mesoporous Carbons
★ Adsorption
★ Degradation
論文目次 目錄
中文摘要 i
Abstract ii
謝誌 iv
目錄 v
圖目錄 ix
表目錄 xv
第一章 緒論 1
1-1 前言 1
1-2 研究動機及目的 2
第二章 材料與文獻回顧 5
第一部分 硝基芳香族化合物及染料的還原降解 5
2-1 有機金屬骨架材料 5
2-1-1 類沸石咪唑骨架材料 9
2-1-2 類沸石咪唑骨架材料-8 13
2-1-3 類沸石咪唑骨架衍生碳材料-8 18
第二部分 孔洞碳材對亞甲藍染料的吸附實驗 22
2-2 中孔洞二氧化矽材料 22
2-2-1 中孔洞材料 22
2-2-2 界面活性劑之簡介及微胞的形成 24
2-2-3 界面活性劑與矽氧化物的相互作用 29
2-3 奈米模鑄法 ( Nanocasting ) 合成機制 32
2-3-1 中孔洞碳材之發展 35
2-4 金屬奈米顆粒對汙染物降解反應之文獻 40
2-5 中孔洞材料吸附染料之發展及應用 45
第三章 實驗方法 51
3-1 實驗藥品及氣體 51
3-2 材料合成方法 54
第一部分 硝基芳香族化合物及染料的還原降解 54
3-2-1 類沸石咪唑骨架材料-8 (ZIF-8) 54
3-2-2 類沸石咪唑骨架衍生碳材料-8 (CZ-8) 54
3-2-3 銀/銅附載於CZ-8的製程 (AgxCuy@CZ-8) 55
第二部分 孔洞碳材對亞甲藍染料的吸附實驗 58
3-2-4 三維立方體Ia3d中孔洞矽材KIT-6合成 58
3-2-5 二維結構p6mm中孔洞矽材料SBA-15合成 59
3-2-6 三維立方體Ia3d中孔洞碳材料CMK-9製程 59
3-2-7 三維立方體Ia3d中孔洞碳材料CMK-8製程 60
3-2-8 二維結構p6mm中孔洞碳材料CMK-5製程 61
3-3 材料應用 64
3-3-1 材料對硝基苯酚及染料進行還原降解反應 64
3-3-2 材料回收之重複使用實驗 65
3-3-3 染料吸附之染料檢量線 65
3-3-4 四種材料在不同pH下之染料吸附實驗 66
3-3-5 六種材料在不同初始濃度對MB染料吸附實驗 66
3-3-6 六種材料在在不同時間下對MB染料吸附實驗 67
3-4 實驗設備 68
3-4-1 實驗合成設備 68
3-4-2 實驗鑑定儀器 68
3-5 材料性質鑑定 70
3-5-1 N2-Adsorption-Desorption Isotherm, BET (氮氣吸脫附等溫曲線) 70
3-5-2 Wide-Angle Powder X-ray Diffraction, WAXRD (大角度X-光粉末繞射儀) 76
3-5-3 同步輻射光束線 78
3-5-4 High Resolution Scanning Electron Microscope, HR-SEM (高解析場發射掃描式電子顯微鏡) 80
3-5-5 High Resolution Transmission Electron Microscope, HR-TEM (高解析穿透式電子顯微鏡) 82
3-5-6 Thermogravimetric Analyzer, TGA (熱重分析儀) 83
3-5-7 X-ray Photoelectron Spectroscopy, XPS (X-光光電子能譜儀) 85
第四章 實驗數據 87
第一部分 硝基芳香族化合物及染料的還原降解 87
4-1第一部分基本性質鑑定 87
4-1-1 N2-Adsorption-Desorption Isotherm, BET 87
4-1-2 Wide-Angle Powder X-ray Diffraction, WAXRD 90
4-1-3 High Resolution Scanning Electron Microscope, HR-SEM 92
4-1-4 High Resolution Transmission Electron Microscope, HR-TEM 96
4-1-5 X-ray photoelectron spectroscopy, XPS 102
4-1-6 Raman spectroscopy 107
4-1-7 Thermogravimetric Analyzer, TGA 109
4-2 AgxCuy@CZ-8 催化結果 111
4-2-1 AgxCuy@CZ-8之4-Nitrophenol催化活性結果 111
4-2-2 AgxCuy@CZ-8還原4-NP的動力學及催化活性探討 114
4-2-3 Ag6Cu4@CZ-8之回收利用 118
4-2-4 AgxCuy@CZ-8之2-Nitrophenol催化活性結果 120
4-2-5 AgxCuy@CZ-8還原2-NP的動力學及催化活性探討 122
4-2-6 AgxCuy@CZ-8之RhB降解結果 124
4-2-7 AgxCuy@CZ-8降解RhB的動力學及催化活性探討 126
4-2-8 AgxCuy@CZ-8之MO降解結果 128
4-2-9 AgxCuy@CZ-8降解MO的動力學及催化活性探討 130
4-2-10 Ag2Cu8@CZ-8之回收利用 132
第二部分 孔洞碳材對亞甲藍染料的吸附實驗 134
4-3 第二部分基本性質鑑定 134
4-3-1 N2-Adsorption-Desorption Isotherm, BET 134
4-3-2 Small-Angle Powder X-ray Diffraction, SAXRD 138
4-3-3 Raman spectroscopy 140
4-3-4 High Resolution Scanning Electron Microscope, HR-SEM 141
4-3-4 High Resolution Transmission Electron Microscope, HR-TEM 143
4-4 四種材料之染料吸附實驗 145
4-4-1 四種材料在不同pH下之染料吸附實驗 145
4-4-2 四種材料在不同初始濃度對MB染料吸附實驗 147
4-4-3 四種材料在不同時間對MB染料吸附實驗 150
4-5 中孔洞材料吸附染料之性質鑑定 151
4-5-1 MB等溫吸附探討 151
4-5-2 MB吸附動力學探討 160
第五章 結論 168
第六章 參考資料 170
圖目錄
圖2-1 常見MOFs奈米顆粒合成方法以及奈米顆粒的分佈方式 9
圖2-2 四配位離子和咪唑衍生物的合成示意圖 10
圖2-3 常見的咪唑衍生物 10
圖2-4 類沸石咪唑骨架材料之示意圖 11
圖2-5 MOF材料之氣體吸脫附 12
圖2-6 九種不同的Topology及相對應的材料歸納 13
圖2-7 ZIF-8 的合成及應用 14
圖2-8 水熱溶劑法示意圖 15
圖2-9 聲化學合成法示意圖 16
圖2-10 物理合成法示意圖 16
圖2-11 靜電紡絲合成法示意圖 17
圖2-12 ZIF-67衍伸碳氮材料運用於醇類催化 19
圖2-13 ZIF-8 衍伸碳氮材料運用於導電材料 19
圖2-14 ZIF-8 衍伸碳氮材料運用於光化學催化 20
圖2-15以化學方式蝕刻ZIF-67鈷金屬 21
圖2-16 Pd@CN 的合成步驟示意圖 21
圖2-17 M41S系列中孔洞材料 22
圖2-18 界面活性劑和微胞示意圖 25
圖2-19 堆積參數g 25
圖2-20 不同種類的介面活性劑 29
圖2-21 界面活性劑模造法和奈米模鑄法 30
圖2-22 界面活性劑和矽氧化物之間的作用力 31
圖2-23 奈米模鑄法 ( Nanocasting ) 合成機制示意圖 34
圖2-24 MCM-48 合成 CMK-1 的結構轉變 36
圖2-25 MCM-48 (左) 及 CMK-1 (右) 37
圖2-26 CMK-1及CMK-5結構示意圖及孔徑分佈 38
圖2-27 不同的溫度能合成出不同孔洞大小的KIT-6 39
圖2-28 CMK-8和CMK-9之小角度粉末繞射圖譜及孔徑分佈 40
圖2-29 4-NP加入NaBH4和未添加觸媒之UV光譜圖 40
圖2-30 SiNWAs-Cu應用於4-NP還原反應之示意圖 42
圖2-31 SiNWAs-Cu應用於RhB及MB染料之降解反應 42
圖2-32 Co@NC之SEM圖 43
圖2-33 Co@NC之TEM圖 43
圖2-34 Co@NC之UV-Vis光譜及重複使用之轉化率 43
圖2-35 鈀金屬對4-NP的反應示意圖 44
圖2-36 鈀奈米顆粒對4-NP之催化效率 44
圖2-37 銀奈米顆粒應用於4-NP還原反應之示意圖 45
圖2-38 染料分子結構 46
圖2-39 PB-x官能基含量對吸附的影響 47
圖 2-40 rGO−CNT−PPD對染料的選擇性吸附示意圖 48
圖2-41 MOF選擇性吸附後之照片與HPLC偵測之結果 49
圖 2-42 高分子凝膠移除染料之示意圖 50
圖3-1 ZIF-8 合成步驟示意圖 56
圖3-2 ZIF-8碳化處理之CZ-8製成步驟 57
圖3-3 銀/銅金屬附載CZ-8之製程 57
圖3-4 KIT-6合成步驟 62
圖3-5 SBA-15合成步驟 62
圖3-6 CMK-9和CMK-5合成步驟 63
圖3-7 CMK-8合成步驟 63
圖3-8 亞甲藍之檢量線 66
圖3-9 IUPAC等溫吸附曲線分類 72
圖3-10 IUPAC提出的四種遲滯回錄曲線 75
圖3-11 布拉格方程式幾何圖 77
圖3-12 同步輻射光源產生示意圖 78
圖3-13 國家同步輻射中心加速器示意圖 79
圖3-14 同步輻射作用機制示意圖 80
圖3-15 掃描式電子顯微鏡基本構造示意圖 81
圖3-16 穿透式電子顯微鏡之儀器基本構造示意圖 83
圖3-17 TGA儀器構造示意圖 84
圖4-1 CZ-8氮氣吸脫附曲線 88
圖4-2 銀銅金屬附載於CZ-8上之氮氣吸脫附曲線圖 89
圖4-3 CZ-8含浸不同比例銀銅金屬之大角度繞射圖譜 91
圖4-4 CZ-8之SEM圖 93
圖4-5 CZ-8含浸不同比例銀銅金屬之SEM圖 94
圖4-6 CZ-8含浸不同比例銀銅金屬之SEM圖 95
圖4-7 CZ-8含浸不同比例銀銅金屬之4W倍TEM圖 97
圖4-8 CZ-8含浸不同比例銀銅金屬之8W倍TEM圖 98
圖4-9 Ag6Cu4@CZ-8 之元素分析 99
圖4-10 Ag2Cu8@CZ-8 之元素分析 99
圖4-11 CZ-8含浸不同比例銀銅金屬之金屬晶格紋路 100
圖4-12 最佳樣品之粒徑分析 101
圖4-13 Ag(10)@CZ-8 之XPS圖譜 103
圖4-14 Ag8Cu2@CZ-8 之XPS圖譜 103
圖4-15 Ag6Cu4@CZ-8 之XPS圖譜 104
圖4-16 Ag4Cu6@CZ-8 之XPS圖譜 104
圖4-17 Ag2Cu8@CZ-8 之XPS圖譜 105
圖4-18 Cu(10)@CZ-8 之XPS圖譜 105
圖4-19 CZ-8含浸不同比例銀銅金屬之拉曼光譜 108
圖4-20 金屬附載於CZ-8及底材之熱重分析圖 110
圖4-21 4-NP 圖4-25還原之光譜示意圖 112
圖4-22 Ag(10)@CZ-8對4-NP之催化還原反應UV圖觸媒加入 112
圖4-23 AgxCuy@CZ-8對4-NP反應的吸收度對反應時間作圖 113
圖4-24 4-NP還原實驗之ln(A/A0) 對反應時間作圖 115
圖4-25 Ag6Cu4@CZ-8對4-NP重複催化結果圖 119
圖4-26 Ag6Cu4@CZ-8重複催化5次後XRD比較圖 119
圖4-27 2-NP還原之光譜示意圖 120
圖4-28 AgxCuy@CZ-8對4-NP反應的吸收度對反應時間作圖 121
圖4-29 2-NP還原實驗之ln(A/A0) 對反應時間作圖 122
圖4-30 RhB降解之光譜示意圖 124
圖4-31 AgxCuy@CZ-8對RhB反應之吸收度對反應時間作圖 125
圖4-32 RhB降解實驗之ln(A/A0) 對反應時間作圖 126
圖4-33 MO降解之光譜示意圖 128
圖4-34 AgxCuy@CZ-8對MO反應之吸收度對反應時間作圖 129
圖4-35 MO降解實驗之ln(A/A0) 對反應時間作圖 130
圖4-36 Ag8Cu2@CZ-8對MO重複催化結果圖 133
圖4-37 Ag8Cu2@CZ-8重複催化5次後XRD比較圖 133
圖4-38 中孔洞矽材之氮氣吸脫附取線圖 135
圖4-39 中孔洞碳材之氮氣吸脫附取線圖 136
圖4-40 中孔洞碳材之孔徑分佈圖 137
圖4-41 中孔洞材料之小角度粉末繞射圖 139
圖4-42 CMK碳材之拉曼光譜 140
圖4-43 中孔洞矽材之SEM影像圖 141
圖4-44 中孔洞碳材之SEM影像圖 142
圖4-45 中孔洞碳材之TEM影像圖 144
圖4-46 四種碳材對於MB染料於不同pH環境下之吸附情形 146
圖4-47 MB隨初始濃度變化之吸附量 148
圖4-48 中孔洞碳材隨著時間變化吸附MB 150
圖4-49 Langmuir線性圖 157
圖4-50 Freundlich線性圖 157
圖4-51 Temkin線性圖 158
圖4-52 Dubinin-Raduskevich線性圖 158
圖4-53 Pseudo-First Order 165
圖4-54 Pseudo-Second Order 166
圖4-55 Elovich kinetic model 167









表目錄
表2-1多孔洞材料孔徑大小之分類 6
表2-2 堆積參數影響微胞結構 26
表3-1 實驗藥品及氣體 51
表3-2銀/銅在CZ-8中不同比例所需雙還原劑的量 56
表4-1 銀銅金屬附載於CZ-8之氮氣吸脫附基本性質 88
表4-2 WAXRD 半峰分析 91
表4-3 XPS元素組成分析統計表 106
表4-4 ID/IG 108
表4-5 AgxCuy@CZ-8對4-NP催化的還原反應速率 116
表4-6 對4-NP催化還原反應與其他文獻的反應速率常數比較 117
表4-7 AgxCuy@CZ-8對2-NP催化的還原反應速率 123
表4-8 AgxCuy@CZ-8對RhB催化的降解反應速率 127
表4-9 AgxCuy@CZ-8對MO催化的還原反應速率 131
表4-10 不同碳材之比表面積及孔洞性質 136
表4-11 六種不同的碳材對MB染料的最大吸附量 148
表 4-12 與其他文獻之MB吸附量比較 149
表 4-13 四種材料在pH 10.0吸附MB 之Langmuir等溫吸附模式相關數據 159
表 4-14 四種材料在pH 10.0吸附MB 之Freundlich等溫吸附模式相關數據 159
表 4-15 四種材料在pH 10.0吸附MB 之Temkin等溫吸附模式相關數據 159
表 4-16 四種材料在pH 10.0吸附MB 之Dubinin-Raduskevich等溫吸附模式相關數據 160
表4-17 吸附動力學擬一級方程計算結果 165
表4-18 吸附動力學擬二級方程計算結果 166
表4-19 Elovich吸附動力學計算結果 167
參考文獻 1. Xie, S., Huang, P., Kruzic, J. et al. A highly efficient degradation mechanism of methyl orange using Fe-based metallic glass powders. Sci. Rep. 2016, 6, 21947
2. Li, X.; Zeng, C.; Jiang, J.; Ai, L., Magnetic cobalt nanoparticles embedded in hierarchically porous nitrogen-doped carbon frameworks for highly efficient and well-recyclable catalysis. J. Mater. Chem. A, 2016, 4, 7476-7482
3. Chaemchuen, S.; Kabir, N. A.; Zhou, K.; Verpoort, F., Metal–organic frameworks for upgrading biogas via CO2 adsorption to biogas green energy. Chem. Soc. Rev. 2013, 42, 9304-9332
4. Chughtai, A. H.; Ahmad, N.; Younus, H. A.; Laypkov, A.; Verpoort, F., Metal–organic frameworks: versatile heterogeneous catalysts for efficient catalytic organic transformations. Chem. Soc. Rev. 2015, 44, 6804-6849
5. Horcajada, P., Chalati, T., Serre, C. et al. Porous metal–organic-framework nanoscale carriers as a potential platform for drug delivery and imaging. Nature Mater 2010, 9, 172–178
6. Li, J.-R.; Sculley, J.; Zhou, H.-C., Metal–Organic Frameworks for Separations. Chem. Rev. 2012, 112 (2), 869-932
7. Kreno, L. E.; Leong, K.; Farha, O. K.; Allendorf, M.; Van Duyne, R. P.; Hupp, J. T., Metal–Organic Framework Materials as Chemical Sensors. Chem. Rev. 2012, 112 (2), 1105-1125
8. Everett, D. H., "IUPAC Manual of Symbols and Terminology", appendix 2, Part 1, Colloid and Surface Chemistry. Pure Appl. Chem. 1972, 31, 578-621.
9. Li, H.; Eddaoudi, M.; O′Keeffe, M.; Yaghi, O. M., Design and synthesis of an exceptionally stable and highly porous metal-organic framework. Nature 1999, 402, 276.
10. Li, J.; Cheng, S.; Zhao, Q.; Long, P.; Dong, J.,Synthesis and hydrogen-storage behavior of metal–organic framework MOF-5. Int. J. Hydrog. Energy 2009, 34, 3, 1977-1382.
11. Furukawa, H.; Cordova, K. E.; O’Keeffe, M.; Yaghi, O. M., The Chemistry and Applications of Metal-Organic Frameworks. Science 2013, 341 (6149).
12. Rabenau, A., The Role of Hydrothermal Synthesis in Preparative Chemistry. Angewandte Chemie International Edition in English 1985, 24 (12), 1026-1040.
13. Pichon, A.; Lazuen-Garay, A.; James, S. L., Solvent-free synthesis of a microporous metal–organic framework. CrystEngComm 2006, 8 (3), 211-214.
14. Klinowski, J.; Almeida Paz, F. A.; Silva, P.; Rocha, J., Microwave-Assisted Synthesis of Metal–Organic Frameworks. Dalton Transactions 2011, 40 (2), 321-330.
15. Qiu, L.-G.; Li, Z.-Q.; Wu, Y.; Wang, W.; Xu, T.; Jiang, X., Facile synthesis of nanocrystals of a microporous metal–organic framework by an ultrasonic method and selective sensing of organoamines. Chemical Communications 2008, 31, 3642-3644.
16. Eddaoudi, M.; Kim, J.; Rosi, N.; Vodak, D.; Wachter, J.; Keeffe, M.; Yaghi, O. M., Systematic Design of Pore Size and Functionality in Isoreticular MOFs and Their Application in Methane Storage. Science 2002, 295 (5554), 469.
17. C. Zlotea, R. Campesi, F. Cuevas, E. Leroy, P. Dibandjo, C. Volkringer, T. Loiseau, G. Férey, and M. Latroche, Pd nanoparticles embedded into a metal-organic framework: synthesis, structural characteristics, and hydrogen sorption properties, J. Am. Chem. Soc. 2010, 132, 2991-2997.
18. Y.E. Cheon, J. Park, and M.-P. Suh, Selective gas adsorption in a magnesium-based metal–organic framework, Chem. Commun. 2009, 5436-5438.
19. A. Corma, H. Garcia, and F.-L. Xamena, Engineering metal organic frameworks for heterogeneous catalysis, Chem. Rev. 2010, 110, 4606-4655.
20. L. He, Y. Liu, J. Liu, Y. Xiong, J. Zheng, Y. Liu, and Z. Tang, Core–shell noble‐metal@metal‐organic‐framework nanoparticles with highly selective sensing property, Angew. Chem. Int. Ed. 2013, 52, 3741-3745.
21. M. Müller, S. Hermes, K. Kähler, and R.-A. Fischer, Loading of MOF-5 with Cu and ZnO nanoparticles by gas-phase infiltration with organometallic precursors: Properties of Cu/ZnO@MOF-5 as catalyst for methanol synthesis, Chem. Mater. 2008, 20, 4576-4587.
22. S. Hermes, M.-K. Schröter, R. Schmid, L. Khodeir, M. Muhler, A. Tissler, R.-W. Fischer, and R.-A. Fischer, Metal@MOF: Loading of highly porous coordination polymers host lattices by metal organic chemical vapor deposition, Angew. Chem. Int. Ed. 2005, 44, 6237-6241.
23. Y.-K. Hwang, D.-Y. Hong, J.-S. Chang, S.-H. Jhung, Y.-K. Seo, J. Kim, A. Vimont, M. Daturi, C. Serre, and G. Férey, Amine grafting on coordinatively unsaturated metal centers of MOFs: consequences for catalysis and metal encapsulation, Angew. Chem. Int. Ed. 2008, 47, 4144-4148.
24. M. Sabo, A. Henschel, H. Fröde, E. Klemm, and S. Kaskel, Solution infiltration of palladium into MOF-5: synthesis, physisorption and catalytic properties, J. Mater. Chem. 2007, 17, 3827-3832.
25. M. Zahmakiran, Iridium nanoparticles stabilized by metal organic frameworks (IrNPs@ZIF-8): synthesis, structural properties and catalytic performance, Dalton Trans. 2012, 41, 12690-12696.
26. C. Rösler, and R.-A. Fischer, Metal–organic frameworks as hosts for nanoparticles, CrystEngComm. 2015, 17, 199-217.
27. A. Phan, A.; Doonan, C., -J.; Uribe-Romo, F., -J.; Knobler, C., -B.; Keeffe, M., -O′.; Yaghi, O., -M., Synthesis, Structure, and Carbon Dioxide Capture Properties of Zeolitic Imidazolate Frameworks. Acc. Chem. Res. 2010, 43, 58–67
28. Banerjee, R.; Phan, A.; Wang, B.; Knobler, C.; Furukawa, H.; Keeffe, M.; Yaghi, O. M., High-Throughput Synthesis of Zeolitic Imidazolate Frameworks and Application to CO2 Capture. Science 2008, 319 (5865), 939
29. Ahmed, A. -A.; Febrian, H.; Al-Muhtaseb, S. -A.; Jeong, H., -K.,
Adsorption of Carbon Dioxide, Methane, and Nitrogen Gases onto ZIF Compounds with Zinc, Cobalt, and Zinc/Cobalt Metal Centers. J. Nanomater. 2019, 2019, 11
30. Soodsuansia, C.; Kulpratipunjab, S.; Ratanatawanatec, C.; Rangsunvigita, P., Adsorption of Methane and Carbon Dioxide on Activated Carbon and ZIF-8 (Zeolitic Imidazolate Framework). Chem. Eng. Trans. 2018, 70, 1633-1638
31. Kaur, H.; Mohanta, G.,-C.; Gupta, V.; Kukkar, D.; Tyagi, S., Synthesis and characterization of ZIF-8 nanoparticles for controlled release of 6-mercaptopurine drug. J Drug Deliv Sci Technol 2017, 41, 106-112.
32. Feng, S.; Zhang, X.; Shi, D.; Wang, Z., Zeolitic imidazolate framework-8 (ZIF-8) for drug delivery: A critical review Front. Chem. Sci. Eng. 2020
33. Jiang, H., -L; Liu, B.; Akita, T.; Haruta, M.; Sakurai, H.; Xu, Q.,
Au@ZIF-8: CO Oxidation over Gold Nanoparticles Deposited to Metal−Organic Framework. J. Am. Chem. Soc.,2009, 131, 32, 11302-11303.
34. Chena, Y.; Tang, S.,Solvothermal synthesis of porous hydrangea-like zeolitic imidazole framework-8 (ZIF-8) crystals. J. Solid State Chem. 2019, 276, 68-74.
35. Cho, H., -Y.; Kim, J.; Kim, S., -N.; Ahn, W., -S., High yield 1-L scale synthesis of ZIF-8 via a sonochemical route. Microporous Mesoporous Mater. 2013, 169, 180-184.
36. Imawaka, K.; Sugita, M.; Takewaki, T.; Tanaka, S.,Mechanochemical synthesis of bimetallic CoZn-ZIFs with sodalite structure. Polyhedron, 2019, 158, 290-295.
37. Holopainen, J.; Heikkilä, M., -J.; Salmi, L., -D.; Ainassaari, K.; Ritala, M., Zeolitic imidazole Framework-8 (ZIF-8) fibers by gas-phase conversion of electroblown zinc oxide and aluminum doped zinc oxide fibers. Microporous Mesoporous Mater. 2018, 267, 212-220.
38. N-Doped CMK-3 Carbons Supporting Palladium Nanoparticles as Catalysts for Hydrodechlorination. C. Ruiz-García, F. Heras, L. Calvo, N. Alonso-Morales, J. J. Rodríguez, M. A. Gilarranz Ind. Eng. Chem. Res. 2019, 58, 11, 4355–4363
39. Zhang, L.;Jie, S.; Cheng, N.; Liu, Z., Solvent-Free Melting-Assisted Pyrolysis Strategy Applied on the Co/N Codoped Porous Carbon Catalyst. ACS Sustainable Chem. Eng. 2019, 7, 24, 19474–19482
40. Sui, Z.; Meng, Q.; Zhang, X.; Ma, R.; Cao, B., Green synthesis of carbon nanotube–graphene hybrid aerogels and their use as versatile agents for water purification. Journal of Materials Chemistry 2012, 22 (18), 8767-8771.
41. Wang, W.; Yuan, D., Mesoporous carbon originated from non-permanent porous MOFs for gas storage and CO2/CH4 separation. Scientific Reports 2014, 4, 5711.
42. Portehault, D.; Giordano, C.; Gervais, C.; Senkovska, I.; Kaskel, S.; Sanchez, C.; Antonietti, M., High-Surface-Area Nanoporous Boron Carbon Nitrides for Hydrogen Storage. Advanced Functional Materials 2010, 20 (11), 1827-1833.
43. Wang, Y.; Wang, X.; Antonietti, M., Polymeric Graphitic Carbon Nitride as a Heterogeneous Organocatalyst: From Photochemistry to Multipurpose Catalysis to Sustainable Chemistry. Angewandte Chemie International Edition 2012, 51 (1), 68-89.
44. Zheng, Y.; Liu, J.; Liang, J.; Jaroniec, M.; Qiao, S. Z., Graphitic carbon nitride materials: controllable synthesis and applications in fuel cells and photocatalysis. Energy & Environmental Science 2012, 5 (5), 6717-6731.
45. Zhu, C.; Dong, S., Recent progress in graphene-based nanomaterials as advanced electrocatalysts towards oxygen reduction reaction. Nanoscale 2013, 5 (5), 1753-1767.
46. Fang, W.; Zhang, N.; Fan, L.; Sun, K., Preparation of polypyrrole-coated Bi2O3@CMK-3 nanocomposite for electrochemical lithium storage. Electrochimica Acta 2017, 238, 202-209.
47. Zhou, Y.-X.; Chen, Y.-Z.; Cao, L.; Lu, J.; Jiang, H.-L., Conversion of a metal–organic framework to N-doped porous carbon incorporating Co and CoO nanoparticles: direct oxidation of alcohols to esters. Chemical Communications 2015, 51 (39), 8292-8295.
48. Young, C.; Salunkhe, R.-R.; Hu, C.-C.; Shahabuddin, M.; Yanmaz, E.; Hossain, S.; Kim, J.-H.; Yamauchi, Y., Zeolitic imidazolate framework (ZIF-8) derived nanoporous carbon: the effect of carbonization temperature on the supercapacitor performance in an aqueous electrolyte. Phys. Chem. Chem. Phys. 2016, 18, 29308-29315.
49. Liu, S.; Wanga, J.; Yu, J., ZIF-8 derived bimodal carbon modified ZnO photocatalysts with enhanced photocatalytic CO2 reduction performance. RSC Adv. 2016, 6, 59998-60006.
50. Wang, X.; Li, Y., Nanoporous carbons derived from MOFs as metal-free catalysts for selective aerobic oxidations. Journal of Materials Chemistry A 2016, 4 (14), 5247-5257.
51. Ding, S.; Zhang, C.; Liu, Y.; Jiang, H.; Xing, W.; Chen, R., Pd nanoparticles supported on N-doped porous carbons derived from ZIF-67: Enhanced catalytic performance in phenol hydrogenation. J Ind Eng Chem 2017, 46, 25, 258-265.
52. Beck, J. S.; Vartuli, J.; Roth, W. J.; Leonowicz, M.; Kresge, C.; Schmitt, K.; Chu, C.; Olson, D. H.; Sheppard, E.; McCullen, S., A new family of mesoporous molecular sieves prepared with liquid crystal templates. Journal of the American Chemical Society 1992, 114 (27), 10834-10843.
53. Kresge, C.; Leonowicz, M.; Roth, W. J.; Vartuli, J.; Beck, J., Ordered mesoporous molecular sieves synthesized by a liquid-crystal template mechanism. nature 1992, 359 (6397), 710.
54. Gibson, L., Mesosilica materials and organic pollutant adsorption: part A removal from air. Chemical Society Reviews 2014, 43 (15), 5163-5172.
55. Zhao, D.; Feng, J.; Huo, Q.; Melosh, N.; Fredrickson, G. H.; Chmelka, B. F.; Stucky, G. D., Triblock copolymer syntheses of mesoporous silica with periodic 50 to 300 angstrom pores. science 1998, 279 (5350), 548-552.
56. Raman, N. K.; Anderson, M. T.; Brinker, C. J., Template-based approaches to the preparation of amorphous, nanoporous silicas. Chemistry of Materials 1996, 8 (8), 1682-1701.
57. 18. Fayed, T. A.; Shaaban, M. H.; El‑Nahass, M. N.; Hassan, F. M., Hybrid organic–inorganic mesoporous silicates as optical nanosensor for toxic metals detection. International Journal of Chemical and Applied Biological Sciences 2014, 1 (6), 74.
58. Soler-illia, G.J.D.; Sanchez, C.; Lebeau, B.; Patarin, J., Chemical Strategies To Design Textured Materials:  from Microporous and Mesoporous Oxides to Nanonetworks and Hierarchical Structures. Chem. Rev. 2002, 102, 11, 4093–4138.
59. Fyfe, C.-A.; Fu, G.,Structure Organization of Silicate Poly anions with Surfactants:A New Approach to the Syntheses, Structure Transformations, and Formation Mechanisms of Mesostructural Materials. J. Am. Chem. Soc. 1995, 117, 9709-9714
60. Liang, C.; Hong, K.; Guiochon, G. A.; Mays, J. W.; Dai, S., Synthesis of a Large-Scale Highly Ordered Porous Carbon Film by Self-Assembly of Block Copolymers. Angewandte Chemie International Edition 2004, 43 (43), 5785-5789.
61. Liang, C.; Dai, S., Synthesis of Mesoporous Carbon Materials via Enhanced Hydrogen-Bonding Interaction. Journal of the American Chemical Society 2006, 128 (16), 5316-5317.
62. Knox, J. H.; Kaur, B.; Millward, G. R., Structure and performance of porous graphitic carbon in liquid chromatography. Journal of Chromatography A 1986, 352, 3-25.
63. Prospects for Carbon as Packing Material in High-Performance Liquid Chromatography. Journal of Liquid Chromatography 1983, 6 (sup001), 1-36.
64. Li, W.-C.; Lu, A.-H.; Weidenthaler, C.; Schüth, F., Hard-Templating Pathway To Create Mesoporous Magnesium Oxide. Chemistry of Materials 2004, 16 (26), 5676-5681.
65. Bonelli, B.; Esposito, S.; Freyria, F. S., Mesoporous Titania: Synthesis, Properties and Comparison with Non-Porous Titania. In Titanium Dioxide, InTech: 2017.
66. Tascón, J. M., Novel carbon adsorbents. Elsevier: 2012.
67. Knox, J. H.; Kaur, B.; Millward, G. R., Structure and performance of porous graphitic carbon in liquid chromatography. Journal of Chromatography A 1986, 352, 3-25.
68. Ryoo, R.; Joo, S. H.; Kruk, M.; Jaroniec, M., Ordered mesoporous carbons. 2001.
69. Ryoo, R.; Joo, S. H.; Jun, S., Synthesis of highly ordered carbon molecular sieves via template-mediated structural transformation. The Journal of Physical Chemistry B 1999, 103 (37), 7743-7746.
70. Solovyov, L. A.; Zaikovskii, V. I.; Shmakov, A. N.; Belousov, O. V.; Ryoo, R., Framework characterization of mesostructured carbon CMK-1 by X-ray powder diffraction and electron microscopy. The Journal of Physical Chemistry B 2002, 106 (47), 12198-12202.
71. Kleitz, F.; Choi, S. H.; Ryoo, R., Cubic Ia3d large mesoporous silica: synthesis and replication to platinum nanowires, carbon nanorods and carbon nanotubes. Chemical Communications 2003, (17), 2136-2137.
72. Yang, X.; Zhong, H.; Zhu, Y.; Jiang, H.; Shen, J.; Huang, J.; Li, C., Highly efficient reusable catalyst based on silicon nanowire arrays decorated with copper nanoparticles. Journal of Materials Chemistry A 2014, 2 (24), 9040-9047.
73. Li, X.; Zeng, C.; Jiang, J.; Ai, L., Magnetic cobalt nanoparticles embedded in hierarchically porous nitrogen-doped carbon frameworks for highly efficient and well-recyclable catalysis. Journal of Materials Chemistry A 2016, 4 (19), 7476-7482.
74. Liu, M., Jiang, H., Liu, Y., Chen, R., Pd Nanoparticles Immobilized in Layered ZIFs as Efficient Catalysts for Heterogeneous Catalysis. Ind. Eng. Chem. Res. 2019, 58, 20553-20561
75. Zhang, W., Sun, Y., Zhang, L., In Situ Synthesis of Monodisperse Silver Nanoparticles on SulfhydrylFunctionalized Poly(glycidyl methacrylate) Microspheres for Catalytic Reduction of 4‑Nitrophenol. Ind. Eng. Chem. Res. 2015, 54, 25, 6480-6488
76. Ho, K.-Y.; McKay, G.; Yeung, K.-L., Selective adsorbents from ordered mesoporous silica. Langmuir 2003, 19, 3019-3024.
77. M.-M. Mohamed, Acid dye removal: comparison of surfactant-modified mesoporous FSM-16 with activated carbon derived from rice husk. J. Colloid Interface Sci. 2004, 272, 28-34.
78. H.-Y. Wu, F.-K. Shieh, H.-M. Kao, Y.-W. Chen, J. R. Deka, S.-H. Liao and C.-W. Wu, Synthesis, bifunctionalization, and remarkable adsorption performance of benzene-bridged periodic mesoporous organosilicas functionalized with high loadings of carboxylic acids. Chem. Eur. J. 2013, 19, 6358-6367.
79. J. R. Deka, C.-L. Liu, T.-H. Wang, W.-C. Chang and H.-M. Kao, Synthesis of highly phosphonic acid functionalized benzene-bridgedperiodic mesoporous organosilicas for use as efficient dye adsorbents. J. Hazar. Mater. 2014, 278, 539-550.
80. C.-H. Tsai, W.-C. Chang, D. Saikia, C.-E. Wu and H.-M. Kao, Functionalization of cubic mesoporous silica SBA-16 with carboxylicacid via one-pot synthesis route for effective removal of cationic dyes, J. Hazar. Mater. 2016, 309, 236-248.
81. Wang, Z.-L.; Yan, J.-M.; Wang, H.-L.; Jiang, Q., Self-protective cobalt nanocatalyst for long-time recycle application on hydrogen generation by its free metal-ion conversion. Journal of Power Sources 2013, 243, 431-435.
82. Kim, T.-W.; Kleitz, F.; Paul, B.; Ryoo, R., MCM-48-like Large Mesoporous Silicas with Tailored Pore Structure:  Facile Synthesis Domain in a Ternary Triblock Copolymer−Butanol−Water System. J. Am. Chem. Soc. 2005, 127 (20), 7601-7610.
83. Zhao, X.; Li, Q.; Ma, X.; Xiong, Z.; Quan, F.; Xia, Y., Alginate fibers embedded with silver nanoparticles as efficient catalysts for reduction of 4-nitrophenol. RSC Advances 2015, 5 (61), 49534-49540.
84. Q.-L. Hong, Y.-H. Dong, W. Zhuang, C. Rao and C. Liu, Kinetics and Thermodynamics of Lysozyme Adsorption on Mesoporous Titanium Dioxide. Acta Phys. Chim. Sin. 2016, 32, 638-646.
85. ZA AL-Othman, A Review: Fundamental Aspects of Silicate Mesoporous Materials. Materials 2012, 5, 2874-2902
86. Fang, B.; Kim, M.-S.; Kim, J. H.; Lim, S.; Yu, J.-S., Ordered multimodal porous carbon with hierarchical nanostructure for high Li storage capacity and good cycling performance. Journal of Materials Chemistry 2010, 20 (45), 10253-10259.
87. Krishna, R.; Fernandes, D. M.; Ventura, J.; Freire, C.; Titus, E., Novel synthesis of highly catalytic active Cu@ Ni/RGO nanocomposite for efficient hydrogenation of 4-nitrophenol organic pollutant. International Journal of Hydrogen Energy 2016, 41 (27), 11608-11615.
88. Xu, Z.; He, X.; Liang, M.; Sun, L.; Li, D.; Xie, K.; Liao, L., Catalytic reduction of 4-nitrophenol over graphene supported Cu@ Ni bimetallic nanowires. Materials Chemistry and Physics 2019, 227, 64-71.
89. Seethapathy, V.; Sudarsan, P.; Pandey, A. K.; Pandiyan, A.; Kumar, T. V.; Sanjeevi, K.; Sundramoorthy, A. K.; Moorthy, S. B. K., Synergistic effect of bimetallic Cu: Ni nanoparticles for the efficient catalytic conversion of 4-nitrophenol. New Journal of Chemistry 2019, 43 (7), 3180-3187.
90. Sun, Y.; Xu, L.; Yin, Z.; Song, X., Synthesis of copper submicro/nanoplates with high stability and their recyclable superior catalytic activity towards 4-nitrophenol reduction. Journal of Materials Chemistry A 2013, 1 (39), 12361-12370.
91. Sun, L.; Deng, Y.; Yang, Y.; Xu, Z.; Xie, K.; Liao, L., Preparation and catalytic activity of magnetic bimetallic nickel/copper nanowires. RSC Advances 2017, 7 (29), 17781-17787.
92. Zhang, Y.; Yan, W.; Sun, Z.; Li, X.; Gao, J., Fabrication of magnetically recyclable Ag/Cu@ Fe3O4 nanoparticles with excellent catalytic activity for p-nitrophenol reduction. Rsc Advances 2014, 4 (72), 38040-38047.
93. Li, C.; Luan, Y.; Zhao, B.; Kumbhar, A.; Fang, J., Size-Controlled Synthesis of CuNi Nano-Octahedra and Their Catalytic Performance towards 4-Nitrophenol Reduction Reaction. MRS Advances 2019, 4 (5-6), 263-269.
94. Borah, B. J.; Bharali, P., Surfactant-free synthesis of CuNi nanocrystals and their application for catalytic reduction of 4-nitrophenol. Journal of Molecular Catalysis A: Chemical 2014, 390, 29-36.
95. C. Sarkar, C. Bora and S.-K. Dolui, Selective Dye Adsorption by pH Modulation on Amine-Functionalized Reduced Graphene Oxide-Carbon Nanotube Hybrid. Ind. Eng. Chem. Res. 2014, 53, 16148-16155.
96. Y.-X. Tan, Y.-P. He, M. Wang and J. Zhang, A water-stable zeolite-like metal–organic framework for selective separation of organic dyes. RSC Adv. 2014, 4, 1480-1483.
97. N. Cheng, Q. Hu, Y. Guo, Y. Wang and L. Yu, Efficient and Selective Removal of Dyes Using Imidazolium-Based Supramolecular Gels. ACS Appl. Mater. Interfaces 2015, 7, 10258-10265.
98. Fang, B.; Kim, M.-S.; Kim, J. H.; Lim, S.; Yu, J.-S., Ordered multimodal porous carbon with hierarchical nanostructure for high Li storage capacity and good cycling performance. Journal of Materials Chemistry 2010, 20 (45), 10253-10259.
99. A. Dada, A. Olalekan, A.-M. Olatunya and DADA, Langmuir, Freundlich, Temkin and Dubinin–Radushkevich isotherms studies of equilibrium sorption of Zn2+ unto phosphoric acid modified rice husk. IOSR J. Appl. Chem. 2012, 3, 38-45.
100. Q.-Lan, A.-S. Bassi, J.-X. Zhu and A. Margaritis, A modified
Langmuir model for the prediction of the effects of ionic strength on the equilibrium characteristics of protein adsorption onto ion exchange/affinity adsorbents. J. Chem. Eng. 2001, 81, 179-186.
101. T.-X. Bui and H. Choi, Adsorptive removal of selected pharmaceuticals by mesoporous silica SBA-15. J. Hazar. Mater. 2009, 168, 602-608.
102. G.-W. Lim, J.-K. Lim, A.-L. Ahmad and D.-J.-C. Chan, Influences of diatom frustule morphologies on protein adsorption behavior. J. Appl. Phycol. 2015, 27, 763-775.
103. S. Schlienger, A.-L. Graff, A. Celzardb and J. Parmentier, Direct synthesis of ordered mesoporous polymer and carbon materials by a biosourced precursor. Green Chem. 2012, 14, 313-316.
指導教授 高憲明(Hsien-Ming Kao) 審核日期 2020-7-30
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明