博碩士論文 107223005 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:131 、訪客IP:18.224.53.73
姓名 陳彥婷(Yen-Ting Chen)  查詢紙本館藏   畢業系所 化學學系
論文名稱 錫修飾對一氧化碳在鉑(111)電極上吸附及氧化的影響
相關論文
★ 岐狀結構材料在鋰電池的應用★ Adsorption and Electrochemical Polymerization of Pyrrole on Au (100) Electrode as Examine by In Situ Scanning Tunneling Microscopy
★ Synthesis and Characterization of Cyclopentadithiophene (CDT) based Organic Photovoltaic and Pyrazine Contained Hole Transporting Small Molecules★ 有機碘化物在金、銠、鉑(111)電極和有機二硫醇化物在鉑(111)電極的吸附結構
★ STM研究銥(111)上碘、一氧化碳和一氧化氮的吸附及銅(100)上鎳和鉛的沈積★ 利用掃描式電子穿隧顯微鏡觀察鍍銅在鉑(111)及銠(111)電極表面
★ 使用in-situ STM和循環伏安儀研究銅和銀在碘修飾的鉑(100)電極之沈積過程★ 利用in-situ STM觀察銅(100)電極上鉛與鎳的沉積過程
★ 利用in-situ STM觀察硫酸根、氧及碘在釕(001)電極和醋酸、間苯三酚在銠(111)電極的吸附結構★ 掃描式電子穿隧顯微鏡及循環伏安法對 有機碘化物在鉑(111)電極上的研究
★ 半導體碘化鉛薄膜在單結晶銠電極上的研究★ 利用掃描式電子穿隧顯微鏡觀察汞薄膜在銥(111)電極上鹵素的吸附結構
★ 掃描式電子穿隧顯微鏡研究碘原子對汞在 銥(111)、鉑(111)及銠(111)上沈積的影響★ 掃描式電子穿隧顯微鏡對烷基及芳基硫醇分子在鉑(111)及金(111)上之研究
★ 掃描式電子穿隧顯微鏡研究一氧化碳、硫、硫醇分子及氯在釕(001)上的吸附結構★ 硫氧化物及聚賽吩衍生物 在金、鉑電極上之研究
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 本論文利用循環伏安法(Cyclic Voltammetry,CV)和掃描式電子穿隧顯微鏡(Scanning Tunneling Microscope,STM),探討在鉑(111)電極上,錫修飾層的結構及對於一氧化碳吸附及氧化的影響,另外探討在酸中,二氧化碳還原為一氧化碳之活性。
STM結果表明,錫鉑載體上先以單層之方式成長,到達約0.6層後,轉為三維島狀的方式成長。錫普遍以團簇吸附於鉑(111)電極表面,在少數情狀下觀察到和載體夾30度的鏈狀結構,但這些結構並不穩定,會隨時間消失後轉變成島狀聚集。藉由電位掃描進行錫電鍍時,於負電位觀察到金屬態的錫原子,於正電位則觀察到氧化錫結構。
錫的修飾對一氧化碳在鉑(111)電極上的氧化檢測,循環伏安圖中出現兩個氧化特徵峰,其中主峰在0.45~0.5 V,此一特徵和鉑(111)相比,向負移動0.1 V,可歸因於錫所提供的氫氧根,其與一氧化碳反應後成二氧化碳離開電極表面,同時在主峰之前,於0.2~0.3 V出現一較小的氧化特徵峰,可能是錫修飾後,一氧化碳的吸附能力變弱使其易被氧化。分子解像STM的結果顯示,在低錫覆蓋鉑電極上,吸附的一氧化碳分子,其結構隨正電位轉變,在最後氧化變亂前,從緊密排列之(2 × 2)轉成較鬆散之(√7 × √7),但在高覆蓋度的錫鉑電極,吸附一氧化碳形成(√7 × √7)的結構,可能此時鉑電極上未被錫佔據的空間,無法讓一氧化碳分子形成一緊密的結構。在一氧化碳氧化的過程中,觀察到中間產物 - 碳酸氫根離子,以不規則的方式吸附在鉑(111)電極上。
在鉑(111)電極上,一氧化碳和錫競爭吸附,因此會影響彼此的結構,在負電位時,一氧化碳的吸附較強,促使錫會移動並聚集成島狀特徵,在飽和的一氧化碳環境,數小時後,三維的錫轉變成平坦的島狀物,或以磊晶的方式吸附在鉑(111)表面。
二氧化碳在鉑電極的還原反應,目前的結果顯示,其速率會和電解液與鉑電極晶面有關,修飾少量的錫後,可導致形成除一氧化碳外的小分子,其氧化電位和甲醇類似。在鉑(111)電極上,二氧化碳還原一氧化碳是一緩慢的過程,可以利用STM觀察其結構和移動。
摘要(英) In this study, cyclic voltammetry (CV) and scanning tunneling microscope (STM) are used to explore the adsorption and oxidation of carbon monoxide (CO) on Sn-modified Pt(111) electrode.
First, in situ STM imaging reveals the intermediate, designated as bicarbonate HCO3-, in the oxidation process of CO, on the Pt(111) electrode. This HCO3- is adsorbed in disarray. The structure of Sn deposited on Pt(111) is also examined by STM, showing that layer type of growth of Sn for the first 0.6 layer, followed by a three-dimensional growth. Most Sn deposit assumes clusters on Pt(111), but occasionally atomic chains are observed, which are aligned in <121> direction of Pt(111). The lifespan of these Sn chains is only 1 hr before they turn into 3D clusters. If Sn is deposited on Pt(111) under potential modulation, STM reveals atomically flat Sn patches at negative potential, by which structure of atomic Sn deposit and Sn oxide structure are observed at negative and positive potentials.
Two oxidation peaks are observed in the stripping voltammogram recorded with CO monolayer adsorbed on Sn-modified Pt(111) electrode. The main peak emerges at 0.45~0.5 V, which is 0.1 V more negative than that of Pt(111). This shift in CO oxidation potential can be attributed to bifunctional effect, where OH- is produced at the Sn deposit and react with nearby CO adsorbed on Pt sites. When Sn is at a low coverage, the structural change of CO is due to the difference in potential. Conversely, when Sn is at a high coverage, the structural change of CO is due to the increased CO content. A minor pre-peak (0.2~0.3 V) is also noted, as the Pt - CO binding can be weakened by Sn, facilitating CO oxidation at more negative potential.
CO and Sn can compete for the Pt sites on Pt(111). At negative potential, CO binds more strongly than Sn, forcing pre-deposit Sn to move to different sites and aggregate into 3D clusters. As adsorbed CO is removed from the Pt(111) electrode, Sn deposit can migrate to Pt sites and occupy the entire Pt surface. However, it is possible to control the structure of Sn deposit. By keeping the Sn/Pt(111) electrode in CO - saturated electrolyte, 3D Sn aggregates can transform into layered type structures. This epitaxial deposition model is manifested in the flat patches on the Pt(111) electrode.
Finally, the reduction of CO2 to CO at bare and Sn-modified Pt(111) electrodes is examined in sulfuric and perchloric acids. By holding the potential at -0.2 V (vs. Ag/AgCl) in CO - saturated 0.1 M HClO4, we observe ordered (2  2) CO adlattice on Pt(111) by STM imaging. The efficiency of this CO2 to CO conversion is affected by the chemical identity of electrolyte, crystal orientation, and composition of Pt electrode. In contrast to the immobile nature of CO adlayer prepared by dosing with CO directly, the reduction of CO2 and the mobile CO molecules on the Pt(111) electrode are observed.
關鍵字(中) ★ 穿隧式掃描電子顯微鏡
★ 鉑(111)
★ 錫
★ 一氧化碳
關鍵字(英)
論文目次 摘要 ii
Abstract iv
誌謝 vi
目錄 vii
圖目錄 ix
表目錄 xiv
第一章 緒論 1
1-1一氧化碳 1
1-1-1燃料電池 1
1-1-2一氧化碳和鉑的吸附 2
1-2錫 2
1-2-1錫的自發性吸附 2
1-2-2晶鬚 3
1-2-3氣體傳感器 3
1-2-4透明導電玻璃 3
1-3二氧化碳 4
1-3-1二氧化碳還原 4
1-3-2二氧化碳還原文獻回顧 4
第二章 實驗部分 8
2-1 實驗藥品 8
2-2實驗氣體 8
2-3 實驗線材 8
2-4 儀器設備 9
2-5 實驗步驟 10
第三章 結果與討論 13
3-1 鉑(111)電極於電解液中的循環伏安圖 13
3-1-1 鉑(111)電極於過氯酸中的循環伏安圖 13
3-1-2 鉑(111)電極於硫酸中的循環伏安圖 13
3-2 一氧化碳在鉑(111)電極上的吸附 15
3-2-1一氧化碳在鉑(111)電極上氧化的循環伏安圖 15
3-2-2一氧化碳在鉑(111)電極上吸附的STM圖 18
3-3錫在鉑(111)上的吸附 20
3-3-1錫在鉑(111)上吸附的循環伏安圖 20
3-3-2錫在鉑(111)上吸附的STM圖 28
3-3-3錫修飾於鉑(111)電極吸附一氧化碳的循環伏安圖 44
3-3-4錫修飾於鉑(111)電極吸附一氧化碳的STM圖 52
3-3-5 錫或釕修飾於鉑(111)電極對一氧化碳吸附比較 57
3-3-6一氧化碳對於錫在鉑(111)上吸附的影響 60
3-4粗糙化的鉑(111)電極對一氧化碳氧化影響 72
3-4-1一氧化碳在粗糙化的鉑(111)電極上氧化的循環伏安圖 72
3-4-2粗糙化的鉑(111)電極的STM圖 72
3-5氧氣對一氧化碳氧化影響 77
3-5-1氧氣對一氧化碳氧化影響的STM圖 77
3-5-2氧氣對一氧化碳氧化影響的循環伏安圖 78
3-6 二氧化碳對於鉑(111)電極的影響 88
3-6-1 碳酸根和碳酸氫根離子吸附於鉑(111)電極的循環伏安圖 88
3-6-2 碳酸根和碳酸氫根離子吸附於鉑(111)電極的STM圖 91
3-6-3 二氧化碳對於單層銅於鉑(111)電極的影響 91
3-6-4 二氧化碳於鉑(111)電極上還原的循環伏安圖 101
3-6-5 二氧化碳於錫修飾之鉑(111)電極上還原的循環伏安圖 101
3-6-6 二氧化碳於鉑(111)電極上還原的STM圖 102
結論 111
參考文獻 112
參考文獻 1. Berenz, P.; Tillmann, S.; Massong, H.; Baltruschat, H., Decoration of steps at Pt single crystal electrodes and its electrocatalytic effect. Electrochimica Acta 1998, 43 (19), 3035-3043.
2. Wang, J. G.; Hammer, B., Theoretical study of H2O dissociation and CO oxidation on Pt2Mo(111). Journal of Catalysis 2006, 243 (1), 192-198.
3. Massong, H.; Tillmann, S.; Langkau, T.; Abd El Meguid, E. A.; Baltruschat, H., On the influence of tin and bismuth UPD on Pt(111) and Pt(332) on the oxidation of CO. Electrochimica Acta 1998, 44 (8), 1379-1388.
4. Lu, S.; Li, H.; Sun, J.; Zhuang, Z. J., Promoting the methanol oxidation catalytic activity by introducing surface nickel on platinum nanoparticles. Nano Research 2018, 11 (4), 2058-2068.
5. Toyoshima, R.; Hiramatsu, N.; Yoshida, M.; Amemiya, K.; Mase, K.; Mun, B. S.; Kondoh, H. J., Catalytic CO oxidation over Pd 70 Au 30 (111) alloy surfaces: spectroscopic evidence for Pd ensemble dependent activity. Chemical Communications 2017, 53 (94), 12657-12660.
6. Stalnionis, G.; Tamašauskaitė-Tamašiūnaitė, L.; Pautienienė, V.; Sudavičius, A.; Jusys, Z. J., Modification of a Pt surface by spontaneous Sn deposition for electrocatalytic applications. Journal of Solid State Electrochemistry 2004, 8 (11), 892-899.
7. Resasco, J.; Lum, Y.; Clark, E.; Zeledon, J. Z.; Bell, A. T., Effects of Anion Identity and Concentration on Electrochemical Reduction of CO2. ChemElectroChem 2018, 5 (7), 1064-1072.
8. Hoshi, N.; Suzuki, T.; Hori, Y., CO2 reduction on Pt(S) -[n( 111) × ( 111)] single crystal electrodes affected by the adsorption of sulfuric acid anion. Journal of Electroanalytical Chemistry 1996, 416 (1), 61-65.
9. 程琬君. 利用掃描式電子穿隧顯微鏡觀察一氧化碳分子在釕、錫修飾過的鉑(111)電極上的電氧化現象. 國立中央大學, 桃園縣, 2012.
10. Xiao, X.-Y.; Tillmann, S.; Baltruschat, H., Scanning tunneling microscopy of Sn coadsorbed with Cu and CO on Pt(111) electrodes. Physical Chemistry Chemical Physics 2002, 4 (16), 4044-4050.
11. Diaz, R.; Diez-Perez, I.; Gorostiza, P.; Sanz, F.; R, M., An electrochemical study of tin oxide thin film in borate buffer solutions. Journal of the Brazilian Chemical Society 2003, 14.
12. Batzill, M.; Diebold, U., The surface and materials science of tin oxide. Progress in Surface Science 2005, 79 (2), 47-154.
13. Batzill, M.; Beck, D.; Koel, B., Structure of monolayer tin oxide films on Pt (111) formed using NO_{2} as an efficient oxidant. Physical Review B 2001, 64.
14. Tillmann, S.; Samjeské, G.; Friedrich, K. A.; Baltruschat, H., The adsorption of Sn on Pt(111) and its influence on CO adsorption as studied by XPS and FTIR. Electrochimica Acta 2003, 49 (1), 73-83.
15. Berná, A.; Rodes, A.; Feliu, J. M.; Illas, F.; Gil, A.; Clotet, A.; Ricart, J. M., Structural and spectroelectrochemical study of carbonate and bicarbonate adsorbed on Pt (111) and Pd/Pt (111) electrodes. The Journal of Physical Chemistry B 2004, 108 (46), 17928-17939.
指導教授 姚學麟 審核日期 2020-8-17
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明