博碩士論文 107223034 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:75 、訪客IP:18.188.176.7
姓名 陳宇豐(Yu-Feng Chen)  查詢紙本館藏   畢業系所 化學學系
論文名稱 離子性富勒烯衍生物的合成與性質探討
相關論文
★ 導電高分子應用於鋁質電解電容器之研究★ 異参茚并苯衍生物合成與性質之研究
★ 含雙吡啶或二氮雜啡衍生物配位 基之釕金屬錯合物的合成與其在 染料敏化太陽能電池之應用★ 新型噻吩環戊烷有機染料於染料敏化太陽能電池之應用
★ 應用於染料敏化太陽能電池之新型釕金屬錯合物的合成與性質探討★ 釕金屬光敏化劑的設計與合成及其在染料敏化太陽能電池之應用
★ 染敏電池用之非對稱釕錯合物之輔助配位基的設計與合成★ 含雙噻吩環戊烷之電變色高分子的研究
★ 含噻吩衍生物非對稱方酸染料應用於染料敏化 太陽能電池★ 高品質導電聚苯胺薄膜的合成及應用
★ 染料敏化太陽能電池用導電高分子聚苯胺及聚二氧乙基噻吩陰極催化劑的探討★ 具多功能性之非對稱型釕錯合物的設計與合成並應用於染料敏化太陽能電池
★ 含乙烯噻吩固著配位基之非對稱型釕金屬錯合物應用於染料敏化太陽能電池★ 染料敏化太陽能電池用二茂鐵系統電解質的探討
★ 合成含喹啉衍生物非對稱方酸染料應用於染料敏化太陽能電池★ 合成新穎輔助配位基於無硫氰酸釕金屬光敏劑在染料敏化太陽能電池上的應用
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 自1990年後,可做為N-型材料之富勒烯衍生物的合成因為高分子太陽能電池的發展開始受到注意,但受限於富勒烯本身的反應性,難以藉由調整取代基來改變富勒烯衍生物的性質。本研究不調整取代基種類改以改變取代基數目及更換共軛陰離子的方式來改變富勒烯衍生物的性質,因此合成C60-(RT2+)2(4Cl-)、C60-(RT2+)2(4Br-)、C60-(RT2+)2(4I-)、C60-(RT2+)6(12Cl-)、C60-(RT2+)6(12Br-)、C60-(RT2+)6(12I-)六個離子性富勒烯衍生物。這些富勒烯衍生物因取代基數與共軛陰離子不同而有不同的溶解度,當固定取代基數目時,在甲醇中的溶解度大小為C60-(RT2+)n(2nI-) > C60-(RT2+)n(2nBr-) > C60-(RT2+)n(2nCl-);若共軛陰離子相同時,則富勒烯含有六個取代基的溶解度大於含有兩個取代基。熱重分析(TGA)測得所合成出的離子性富勒烯衍生物的熱裂解溫度約170 oC。UV-Vis吸收光譜顯示所合成的離子性富勒烯衍生物的最大吸收波長落在230到250 nm之間並經由Tauc plot計算出C60-(RT2+)2(4Cl-)、C60-(RT2+)2(4Br-) 、C60-(RT2+)2(4I-)、C60-(RT2+)6(12Cl-)、C60-(RT2+)6(12Br-)、及C60-(RT2+)6(12I-)的energy gap (Eg)分別為2.08 eV、2.04 eV、2.07 eV、1.88 eV、1.80 eV、及1.83 eV。由方波循環伏安法的數據計算得到C60-(RT2+)2(4Cl-)、C60-(RT2+)2 (4Br-) 、C60-(RT2+)2(4I-)、C60-(RT2+)6(12Cl-)、C60-(RT2+)6(12Br-)、C60-(RT2+)6(12I-)的最低無電子分子軌域(LUMO)能階分別為-4.00 eV、-4.01 eV、-4.12 eV、-3.75 eV、-3.66 eV、與-3.61 eV。配合吸收數據求得最高電子占據分子軌域(HOMO)能階則分別為-6.08 eV、-6.05 eV、-6.19 eV、-5.63 eV、-5.46 eV、與-5.44 eV。由C60-(RT2+)2(4X-)和C60-(RT2+)6(12X-)的能階得知,當共軛陰離子固定時,在取代基數目增加時,富勒烯旁邊帶負電的碳原子數目增加使LUMO較高。在共軛富勒烯陽離子有同數目的取代基下,因為陰電性的排序為碘<溴<氯,把電子給共軛富勒烯陽離子的能力排序為碘>溴>氯,因此C60-(RT2+)6(12I-)有最高的LUMO和HOMO能階。
摘要(英) Fullerene derivatives, have attracted a great attention due to the development of polymer solar cells, can be used as N-type materials for polymer solar cells. However, due to the limited reactivity of fullerene, it is difficult to change the properties of fullerene derivatives by changing the substituents. This study intends to change the properties of fullerene derivatives by changing the number of substituents and counter anions. Six ionic fullerene derivatives, C60-(RT2+)2(4Cl-), C60-(RT2+)2(4Br-), C60-(RT2+)2(4I-), C60-(RT2+)6(12Cl-), C60-(RT2+)6(12Br-), and C60-(RT2+)6(12I-) were synthesised. When the number of substituents are fixed, the order of the solubility in methanol is C60-(RT2+)n(2nI-) > C60-(RT2+)n (2nBr-) > C60-(RT2+)n(2nCl-). If the counter anions are the same, the solubility of fullerene derivative containing six substituents is bigger than that containing two substituents. Thermogravimetric analysis (TGA) reveals the thermal staility of the six ionic fullerene derivatives is all about 170 oC. The UV-Vis absorption spectra show that the maximum absorption wavelength (λmax) of the synthesized ionic fullerene derivatives falls between 230 and 250 nm. The energy gaps (Egs) of six ionic fullerene derivatives estimated from the absorption Tauc plot are 2.08 eV, 2.04 eV, 2.07 eV, 1.88 eV, 1.80 eV and 1.83 eV for C60-(RT2+)2(4Cl-), C60-(RT2+)2(4Br-), C60-(RT2+)2(4I-), C60-(RT2+)6(12Cl-), C60-(RT2+)6(12Br-), C60-(RT2+)6(12I-), respectively. The lowest unoccupy molecular orbital (LUMO) of six ionic fullerene derivatives are calculated from the square wave cyclic voltammetry are -4.00 eV, -4.01 eV, -4.12 eV, -3.75 eV, -3.66 eV, and -3.61 eV. The highest occupy molecular orbital (HOMO) to be -6.08 eV, -6.05 eV, -6.19 eV, -5.63 eV, -5.46 eV, and -5.44 eV. According to the energy levels of C60-(RT2+)2(4X-) and C60-(RT2+)6(12X-), when the counter anion is the same, when the number of substituents increases, the fullerene cations have less negative charge, therefore the increasing in the number of substituents makes the LUMO level higher. When the fullerene has the same number of substituents, the order of the electronegativity is iodine < bromide < chlorine, the electron donating ability is in the order of iodine > bromine > chlorine, consequently C60-(RT2+)6(12I-) have the highest LUMO and HOMO energy levels.
關鍵字(中) ★ 離子性富勒烯衍生物 關鍵字(英) ★ ionic fullerene derivative
論文目次 摘要 I
Abstrct III
Graphical Abstract IV
謝誌 V
目錄 VI
圖目錄 IX
表目錄 XI
第一章、緒論 1
1-1、 前言 1
1-2、 富勒烯和其衍生物的應用 1
1-2-1. 醫療應用 2
1-2-2. 光伏元件 8
1-3、 富勒烯和其衍生物的溶解度 9
1-4、 離子性富勒烯衍生物 13
1-5、 研究動機 17
第二章、實驗部分 20
2-1、 實驗藥品與儀器設備 20
2-1-1. 藥品 20
2-1-2. 儀器設備 21
2-2、 儀器分析及樣品製備 22
2-2-1. 核磁共振光譜儀(Nuclear Magnetic Resonance Spectrometer) 22
2-2-2. 紫外/可見/紅外光分光光譜儀(UV/Vis Spectrometer) 23
2-2-3. 電化學測量(Electrochemical Measurement System) 24
2-2-4. 熱重分析(Thermogravimetric Analysis) 25
2-2-5. 傅立葉轉換紅外光光譜儀(Fourier transform infrared spectrometer) 26
2-2-6. 掃描電子顯微鏡(Scanning Electron Microscop)與能量色散X-射線光譜(Energy Dispersive Spectrometer) 27
2-3、 產物與中間產物之結構與簡稱 28
2-4、 實驗步驟 31
2-4-1. C60-(RT2+)2(4Cl-)的合成步驟,如圖 2-4-1所示 31
2-4-2. C60-(RT2+)2(4Br-)的合成步驟,如圖 2-4-2所示 34
2-4-3. C60-(RT2+)2(4I-)的合成步驟,如圖 2-4 3所示 35
2-4-4. C60-(RT2+)6(12Cl-)的合成步驟,如圖 2-4-4所示 36
2-4-5. C60-(RT2+)6(12Br-)的合成步驟,如圖 2-4 5所示 38
2-4-6. C60-(RT2+)6(12I-)的合成步驟,如圖 2-4-6所示 39
第三章、結果與討論 40
3-1、 離子性富勒烯衍生物的合成、純化和鑑定 40
3-2、 離子性富勒烯衍生物的IR穿透光譜圖 42
3-3、 離子性富勒烯衍生物的溶解度 45
3-4、 離子性富勒烯衍生物的熱穩定性質 46
3-5、 離子性富勒烯衍生物的紫外光/可見光吸收光譜 48
3-6、 離子性富勒烯衍生物的前置軌域能階 54
第四章、結論 59
參考文獻 60
附錄 65
附錄一、 1H-NMR光譜圖、質譜圖和循環伏安圖 67
附錄二、 C60-(RT2+)6(12F-)、C60-(RT2+)2(4OTS-)和C60-(RT2+)2(4TCA-)的最終產物分子結構和簡稱: 76
附錄三、 C60-(RT2+)6(12F-)、C60-(RT2+)2(4OTS-)和C60-(RT2+)2 (4TCA-)的合成及C60-(RT2+)2(4OTS-)和C60-(RT2+)2(4TCA-)的性質 77
附錄四、 富勒烯的性質 84
參考文獻 [1] Kroto, H., Heath, J., O’Brien, S. et al. “C60: Buckminsterfullerene”, Nature, 1985, 318, 162-163.
[2] Krätschmer, W., Lamb, L., Fostiropoulos, K. et al. “Solid C60: a new form of carbon”, Nature, 1990, 347, 354-358.
[3] W. Kraetschmer, K. Fostiropoulos, and D. R. Huffman, "The infrared and ultraviolet absorption spectra of laboratory-produced carbon dust: evidence for the presence of the C60 molecule", Chem. Phys. Lett., 1990, 170, 167-170.
[4] S. Martinez, C.S. Seong, R. Cerón, M. Llano, “Fullerene Derivatives Strongly Inhibit HIV-1 Replication by Affecting Virus Maturation without Impairing Protease Activity”, Antimicrob. Agents Chemother. 2016, 60, 5731-5741.
[5] Dr. A.Barzegar, Ms. Es. Naghizadeh, Mr. M. Zakariazadeh, Dr. J. Azamat, “MD simulation study of the HIV-1 protease inhibition using fullerene and new fullerene derivatives of carbon nanostructures”, Mini Rev. Med. Chem., 2019, 19
[6] A. Nimibofa, E. A. Newton, A. Y. Cyprain, and W. Donbebe, "Fullerenes: Synthesis and Applications", J. Mater. Res. Technol., 2018, 7, 22-36.
[7] S. Bosi, D. Ros, G. Spalluto, M. Prato, “Fullerene derivatives: an attractive tool for biological applications”, Eur. J. Med. Chem., 2003, 38, 913-923.
[8] Yuan P., Xiaojuan L., Wei Z., Zhifeng L., Guangming Z., Binbin S., Qinghua L., Qingyun H., Xingzhong Y., Danlian H., Ming C., “Advances in photocatalysis based on fullerene C60 and its derivatives: Properties, mechanism, synthesis, and applications”, Appl. Catal. B., 2020, 265, 4355-4360.
[9] S. Marchesan, D. Ros, G. Spalluto, J. Balzarini, M. Prato, “Anti-HIV properties of cationic fullerene derivative”, Bioorg. Med. Chem., 2005, 15, 3615-3618.
[10] M. Kepinska, etc., “Fullerene as a doxorubicin nanotransporter for targeted breast cancer therapy: Capillary electrophoresis analysis”, Electrophoresis, 2018, 39, 2370-2379.
[11] https://kknews.cc/zh-tw/fashion/klzabev.html, July, 2019.
[12] G. Yu, J.Gao, J.C.Hummelen, F.Wudi, A.J. Heeger, “Polymer Photovoltaic Cells: Enhanced Efficiencies via a Network of Internal Donor-Acceptor Heterojunctions”, Science, 1995, 24, 1789-1791.
[13] R. S. Ruoff, Doris S. Tse, R. Malhotra, and Donald C. Lorents, “Solubility of fullerene (C60) in a variety of solvents”, J. Phys. Chem., 1993, 97, 3379-3383.
[14] Si, W., Zhang, X., Lu, S. et al., “Manganese powder promoted highly efficient and selective synthesis of fullerene mono- and biscycloadducts at room temperature”, Sci. Rep., 2015, 5, 1-8.
[15] Chun I W. and Chi C. Hua, “ Solubility of C60 and PCBM in Organic Solvents”, J. Phys. Chem. B, 2015, 119, 14496-14504.
[16] M. Prato, M. Maggini, “Fulleropyrrolidines:  A Family of Full-Fledged Fullerene Derivatives”, Acc. Chem. Res., 1998, 31, 519.
[17] Carsten Bingel, “Cyclopropanierung von Fullerenen”, Chemische Berichte. 1993, 126, 1957-1959.
[18] D. Ros, and M. Prato, “Easy Access to Water-Soluble Fullerene Derivatives via 1,3-Dipolar Cycloadditions of Azomethine Ylides to C60”, J. Org. Chem., 1996, 61, 9070-9072.
[19] S. Bosi, D. Ros, S. Castellano, E. Banfi and M. Prato, “Antimycobacterial Activity of Ionic Fullerene Derivatives”, Bioorganic & Medicinal Chemistry Letters, 2000, 10, 1043-1045.
[20] C. M. Tollan, J. A. Pomposo and D. Mecerreyes, “Synthesis of Fulleropyrrolidine Pyridinum Salts by Facial Anion Exchange And Their Solubility”, NANO: Brief Reports and Reviews, 2009, 4, 299-302.
[21] F. Richardson, I. Schuster, R. Wilson, “Synthesis and Characterization of Water-Soluble Amino Fullerene Derivatives”, Org. Lett., 2000, 2, 1011-1014.
[22] 魏伸紘,「以電化學法檢測人類乳突病毒序列之研究」,國立交通大學,碩士論文,2004。
[23] http://www.ceb.cam.ac.uk/research/groups/rg-eme/teaching-notes/ linear-sweep-and-cyclic-voltametry-the-principles, August 13th, 2017.
[24] V. V. Pavlishchuk, A. W. Addison, “Conversion constants for redox potentials measured versus different reference electrodes in acetonitrile solutions at 25°C”, Inorganica Chim. Acta, 2000, 298, 97-102.
[25] R. Ganesamoorthy, G. Sathiyan, P. Sakthivel, “Review: Fullerene based acceptors for efficient bulk heterojunction organic solar cell applications”, Sol. Energy Mater Sol. Cells, 2017, 161, 102-148.
[26] T. Mashino, K. Shimotohno, N. Ikegami, D. Nishikawa, K. Okuda, K. Takahashi, . Nakamura, M. Mochizuki, “Human immunodeficiency virus-reverse transcriptase inhibition and hepatitis C virus RNA-dependent RNA polymerase inhibition activities of fullerene derivatives”, Bioorganic Med. Chem. Lett., 2005, 15, 1107-1109.
[27] N. Wang, K. Zhao, T. Ding, W. Liu, A. S. Ahmed, Z. Wang, M. Tian, X. W. Sun, Q. Zhang “Improving interfacial charge recombination in planar heterojunction perovskite photovoltaics with small molecule as electron transport layer”, Adv. Energy Mater., 2017, 7, 1700522-1700529.
[28] J. TAUC et al., “Optical Properties and Electronic Structure of Amorphous Germanium”, Phys. Stat. Sol, 1966, 15, 627-637.
[29] E. A. Davis & N. F. Mott, “Conduction in non-crystalline systems V. Conductivity, optical absorption and photoconductivity in amorphous semiconductors”, Philos. Mag., 1970, 22, 903-922.
[30] K. Eom, U. Kwon, S. Kalanur, Hui J. Park and H. Seo, “Depth-resolved band alignments of perovskite solar cells with significant interfacial effects”, J. Mater. Chem. A, 2017, 5, 2563-2571.
[31] A. Mannu, M. Enrica, D. Pietro and A. Mele, “Band-Gap Energies of Choline Chloride and Triphenylmethylphosphoniumbromide-BasedSystems”, Molecules, 2020, 25, 1495-1506.
[32] Peter A., “Physical Chemistry, 6th edition”, W. H. Freeman & Co., New York, 1997
[33] Yue Ma, Kouya Uchiyama, Hiroshi Ueno, Hiroshi Okada,Hiroshi Moriyama and Yutaka Matsuo, “Highly soluble C2v-symmetrical fullerene derivatives: efficient synthesis, characterization, and electrochemical study”, Org. Chem. Front., 2019, 6, 1372-1377.
[34] Jie Liu, Xingtian Yin, Yuxiao Guo, Meidan Que,Wenxiu Que, “The diverse passivation effects of fullerene derivative on hysteresis behavior for normal and inverted perovskite solar cells”, J. Power Sources, 2020, 461, 1-7
[35] Lingbo Jia, Bairu Li, Yanbo Shang, Muqing Chen, Guan-Wu Wang, Shangfeng Yang, “Double fullerene cathode buffer layers afford highly efficient and stable inverted planar perovskite solar cells”, Org. Electron., 2020, 82, 1-9
指導教授 吳春桂(Chun-Guey Wu) 審核日期 2020-8-17
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明