博碩士論文 107223055 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:128 、訪客IP:3.144.14.41
姓名 湯發皓(FA-HAO TANG)  查詢紙本館藏   畢業系所 化學學系
論文名稱 新型多光子染料與鋰電池導電材料的開發
(Development of Novel Multiphoton Chromophores and New Conducting Materials for Lithium Batteries)
相關論文
★ 含五苯荑及異參茚并苯衍生物之合成與光物理行為之研究★ 具雙光子吸收行為之染料分子的合成與其光學性質探討
★ 新型雙光子吸收材料的分子設計與合成及其光學性質的探討★ 新型多叉及樹枝狀染料分子的合成及其非線性光學性質探討
★ 新穎多叉型之雙光子吸收材料的分子設計、合成與光學性質探討★ 新型四取代乙烯類及喹喔啉類染料分子的合成及其光學性質探討
★ 新型具喹喔啉、三嗪和吡嗪結構之染料分子 的合成及其光學性質探討★ Synthesis and Nonlinear Optical Property Characterizations of Novel Chromophores with Extended π-Conjugation Derived from Functionalized Fluorene Units
★ 含四取代乙烯及類喹喔啉結構單元之多分岐染料分子的合成與其非線性光學性質探討★ Synthesis and Nonlinear Optical Property Characterizations of Novel Fluorophores with Multi-Quinoxalinyl Units
★ 新型含茚并喹喔啉結構單元之樹狀共軛染料分子的合成與其非線性光學性質探討★ 含四取代乙烯乙炔及類喹喔啉結構單元之多分歧染料分子的合成與非線性光學性質探討
★ Two-Photon Absorption and Optical Power-limiting Properties of Three- and Six-Branched Chromophores Derived from 1,3,5-Triazine and Fluorene Units★ 新型含喹喔啉及各類拉電子基之染料分子的合成及其非線性光學性質探討
★ 含咔唑、芴及茚并喹喔啉等雜環單元之共軛染料分子的合成 與其非線性光學性質探討★ 合成各類以雜環為核心的分子並研究其非線性光學性質
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   至系統瀏覽論文 ( 永不開放)
摘要(中) 本論文成功合成出兩個系列的模型分子,第一系列為含三氮唑吡啶(triazolopyridine)和苯並噻唑(benzothiazole)結構單元之不對稱型分子;第二系列為含difluorenoindenophenazine之多環芳香烴模型分子。透過線性光學性質的測量,可以得知模型分子之最大吸收波長、最大放射波長、螢光量子產率與螢光生命期。非線性光學實驗則是以可調整波長之飛秒脈衝式雷射作為激發光源,利用量測螢光強度對激發光強之依賴性來證實這些模型分子皆具有雙光子與三光子吸收性質。另外這些模型分子的雙光子與三光子激發光譜則是使用螢光比較法測得。經分析光學性質與分子結構間的關聯性,我們可歸納出以下結論:
(1) 以D-π-A形式組成之第一系列不對稱條型模型分子,具有良好的螢光量子產率與明顯之溶劑效應且當其溶於極性溶劑下時皆具有較長的螢光生命期。
(2) 在含三氮唑吡啶(triazolopyridine)和苯並噻唑(benzothiazole)為結構單元的模型分子中,若在分子結構中再加入fluorene單元或碳-碳參鍵以增加整體分子的共軛長度,可有效增加分子的雙光子與三光子吸收效率。
(3) 相較於三氮唑吡啶(triazolopyridine),若以苯並噻唑(benzothiazole)作為拉電子基團,可使分子整體具有較高之雙光子與三光子吸收效率。
(4) 在含多環芳香烴之模型分子中,若以difluorenoindenophenazine為結構單元來增加整體分子之共平面性,可使螢光放射波長紅移與增長其螢光生命期,但螢光量子產率與雙光子吸收效率會有明顯下降的趨勢。此結果說明增加分子共平面性的方式與延伸共軛結構的方向皆可能嚴重影響分子多光子吸收能力的增減。
(5) 分析第一系列模型分子之吸收級數光譜,可觀察到分子由雙光子轉變為三光子吸收的完整過程,從中發現若在分子結構中再加入fluorene單元或碳-碳參鍵以增加整體分子的共軛長度,將會縮短分子由雙光子轉變為三光子吸收的光譜跨幅。
本論文另一個主題為開發高安全性電解質材料,分別為離子液體與樹酯單體,由我們合成並經由NMR光譜證實其純度,再交由工業研究院進行電化學穩度與充放電的測試,以提供材料未來可改進及優化的方向,目的為希望開發可商業化及可量產的電解質產品
摘要(英) Two model compound systems are designed and synthesized in this Thesis. The first model system is composed of five congeners using fluorene, triazolopyridine and benzothiazole as the major building units to construct D-π-A type dye molecules. The second model system is derived from difluorenoindenophenazine unit, which is featured by its polycyclic aromatic character. We have performed various linear and nonlinear optical property measurements and some of the features about the relationship between molecular structure and optical properties should be noted:
(1) The D-π-A type dyes in the first model system exhibit high fluorescence quantum yields and salient solvatochromism. The fluorescence lifetimes of these chromophores are found to be longer in polar solvents.
(2) Introducing additional fluorene and/or ethynyl groups into the above-mentioned D-π-A system can efficiently promote the molecular two-photon and three-photon activities.
(3) Compared to triazolopyridine, benzothiazole is a better two-photon and three-photon activity promoter if introduced as an electron-acceptor in our model compound set.
(4) The manner and the direction of extending the π-conjugation could be essential for the resulting magnitudes of molecular two-photon absorptivities.
(5) The order of the absorption process spectra (OAP-spectra) have provided information about the spectral dispersion of two-photon absorption (2PA), three-photon absorption (3PA) as well as the co-existence region for 2PA and 3PA. It is found from the first model system that those dye structures with additional fluorene and/or ethynyl unit manifest comparatively narrower coverage of spectral region for the co-existence of 2PA and 3PA.
In addition, we also carried out a project of developing materials that may be applicable for the electrolytes in lithium battery. The project is funded by the Industrial Technology Research Institute (ITRI, Taiwan). Some preliminary results are included in this Thesis.
關鍵字(中) ★ 三氮唑吡啶 關鍵字(英) ★ triazolopyridine
論文目次 中文摘要. ………………………………………………………………………..v
Abstract……………………………………………………………………..…vii
謝誌…………………………………………………………………………….. ix
目錄……………………………………………………………………………... x
圖目錄………………………………………………………………………….xii
表目錄………………………………………………………………………...xxii
第一章 序論 1
1-1 多光子吸收過程原理及發展歷史背景 1
1-2 多光子吸收之發展歷史背景 2
1-3 多光子吸收材料之分子設計及文獻回顧 3
1-4 鋰電池簡介 7
1-5 研究動機與論文組成 10
參考文獻 11
第二章 分子設計與合成 12
2-1第一系列: 以三氮唑吡啶(triazolopyridine)和苯並噻唑(benzothiazole)為拉電子基之模型分子 12
2-1-1 模型分子設計概念 12
2-1-2 模型分子合成途徑 14
2-2 第二系列: 含吩嗪(Phenazine)單元之共平面模型分子 21
2-2-1 模型分子設計概念 21
2-2-2 模型分子合成途徑 22
參考文獻 27
第三章 光學性質探討 29
3-1 第一系列: 以三氮唑吡啶(triazolopyridine)和苯並噻唑(benzothiazole)為拉電子基之模型分子 29
3-1-1 線性光學 30
3-1-2 非線性光學 35
3-2 第二系列: 含吩嗪(phenazine)單元之共平面模型分子 45
3-2-1 線性光學 46
3-2-2 非線性光學 48
3-3 模型分子之光學性質結果與結論 53
第四章 離子液體和單體之分子設計與合成 55
4-1 離子液體之設計與合成 55
4-2 單體之設計與合成 57
參考文獻 59
第五章 離子液體與單體應用於鋰電池的測試結果 60
5-1 離子液體 60
5-2 單體 63
5-3 結果與討論 68
第六章 實驗儀器與藥品 69
6-1 光學實驗及光學儀器詳述 69
6-2 模型分子合成所使用之藥品及溶劑 74
6-3 離子液體與單體合成所使用之藥品及溶劑 76
6-4 化合物合成詳細步驟 77
第七章 結構鑑定光譜圖 127
參考文獻 [1] http://candle.am/microscopy/
[2] G. S ,He.; Tan, L.-S.; Zheng, Q.; Prasad, P. N., Chem. Rev. 2008, 108, 1245-1330.
[3] Göppert-Mayer, M., Ann. Phys. 1931, 9, 273-295.
[4] (a) Kaiser, W.; Garret, C. G. B., Phys. Rev. Lett. 1961, 7, 229-231; (b) Peticolas, W. L.; Rieckhoff, K. E., J. Chem. Phys, 1963, 39, 1347.
[5] Reinhardt, B. A.; Brott, L. L.; Clarson, S. J.; Dillard, A. G.; Bhatt, J. C.; Kannan, R.; Yuan, L.; Guang S. He; Paras N. Prasad, Chem. Mater. 1998, 10 (7), 1863-1874.
[6] Guang S. He, L. Yuan, F. Xu, and Paras N. Prasad, Bruce A. Reinhardt, Jeffery W. Baur, Richard A. Vaia, and Loon-Seng Tan, Chem. Mater. 2001, 13, 1896-1904.
[7] Marius Albota, David Beljonne, J.-L. Bre´das, Jeffrey E. Ehrlich, J.-Y. Fu, Ahmed A. Heikal, Samuel E. Hess, Thierry Kogej, Michael D. Levin, Seth R. Marder, Dianne McCord-Maughon, Joseph W. Perry, Harald Röckel, Mariacristina Rumi, Girija Subramaniam, Watt W. Webb, X.-L. Wu, C. Xu, Science 1998, 281 (5383), 1653-1656.
[8] M. P. Joshi, J. Swiatkiewicz, F. Xu, P. N. Prasad, Opt. Lett. 1998, 23, 1742-1744.
[9] https://itw01.com/YQYQMEI.html

[1] Kajigaeshi, S.; Kakinami, T.; Moriwaki, M.; Tanaka, T.; Fujisaki, S.; Okamoto, T., Bull. Chem. Soc. Jpn, 1989, 62, 439-443.
[2] Reinhardt, B. A.; Brott, L. L.; Clarson, S. J.; Dillard, A. G.; Bhatt, J. C.; Kannan, R.; Yuan, L.; He, G. S.; Prasad, P. N., Chem. Mater. 1998, 10 (7), 1863-1874.
[3] X. Li, Y. Xiao, and X. Xiao, Org. Lett. 2008, 10, 2885-2888.
[4] Y. Jiang, Y.-X. Lu, Y.-X. Cui, Q.-F. Zhou, Y. Ma, and J. Pe, Org. Lett. 2007, 9, 4539-4542.
[5] Andreas K. C. Mengel, Bice He, and Oliver S. Wenger, J. Org. Chem. 2012, 77, 6545-6552.
[6] T. Ishiyama, M. Murata, N. Miyaura, J. Org. Chem. 1995, 60, 7508-7510.
[7] Jadwiga So¡oducho, Szczepan Roszak, Antoni Chyla and Krzysztof Tajcherta, New J. Chem. 2001, 25, 1175-1181.
[8] M.-J. Lee, M.-S. Kang and Y.-H. Kim, J. Polym. Sci. Part A: Polym. Chem. 2010, 48, 3942-3949.
[9] Satoshi Ueda and Hideko Nagasawa, J. Am. Chem. Soc. 2009, 131, 15080–15081.
[10] John T. Markiewicz, Olaf Wiest, and Paul Helquist, J. Org. Chem. 2010, 75, 4887-4890.
[11] (a) Eric B. Stephens and James M. Tour, Macromolecules 1993, 26, 2420-2427. (b) Matthew J. Mio, Lucas C. Kopel, Julia B. Braun, Tendai L. Gadzikwa, Kami L. Hull, Ronald G. Brisbois, Christopher J. Markworth, and Paul A. Grieco, Org. Lett, 2002, 4, 3199-3202.
[12] Joel M. Kauffman and Guillermo Moyna, J. Org. Chem. 2003, 68, 839-853.
[13] Todor Deligeorgiev, Stela Minkovska, Bojana Jejiazkova, Slavcho Rakovsky, Dyes and Pigments 2002, 53, 101-108.
[14] R. H. Tale, Org. Lett, 2002, 4, 1641-1642.
[15] M. Li, Z. Wang, M. Liang, L. Liu, X. Wang, Z. Sun, and S. Xue, J. Phys. Chem. C , 2018, 122, 24014-24024.
[16] R. Abbel, C. Grenier, M. J. Pouderoijen, J. W. Stouwdam,P. E. L. G. Lecle` re, R. P. Sijbesma, E. W. Meijer, and A. P. H. J. Schenning, J. Am. Chem. Soc. 2009,131,833-843.
[17] Y. Kanazawa, T. Yokota, H. Ogasa, H. Watanabe, T. Hanakawa, S. Soga, M. Kawatsura, Tetrahedron 2015, 71,1395-1402.
[18] B. Kobin, L. Grubert, S. Blumstengel, F. Henneberger and S. Hecht, J. Mater. Chem. 2012, 22, 4383-4390.
[19] Yasuhiro Shirai, Andrew J. Osgood, Y. Zhao, Y. Yao, Lionel Saudan, Hanbiao Yang, Y.-H. Chiu, Lawrence B. Alemany, Takashi Sasaki, Jean-Francois Morin, Jason M. Guerrero, Kevin F. Kelly and James M. Tour, J. Am. Chem. Soc. 2006, 128, 4854-4864.
[20] C.-C. Hsiao, Y.-K. Lin, C.-J. Liu, T.-C. Wu, and Y.-T. Wu, Adv. Synth. Catal. 2010, 352, 3267-3274.
[21] S. H. Jeon, Robinson Anandakathir, Jason Chiang, Long Y. Chiang, Journal of Macromolecular Science Part A: pure and applied chemistry 2007, 4, 1275-1282.
[22] J.-B. Baek, Sharon R. Simko, L. S. Tan, Macromolecules 2006, 39, 7959-7966.
[23] Y. Peng, H. Liu, M. Tang, Cai Lishengb, Pike Victor. Chinese Journal of Chemistry 2009, 27, 1339-1344.
[24] X. Li, D. Wang, J. Wu, W. Xu, Synthetic Communications 2005, 35, 2553.
[25] X. Li, Y. Xiao, and X. Qian., Org. Lett, 2008, 10, 2885-2888.
[26] Zhishan Bo, Changmei Zhang, Nicolai Severin, Jürgen P. Rabe, and A. Dieter Schlüter. Macromolecules 2000, 33, 2688-2694.
[27] Dmitry Aldakov, Manuel A. Palacios, and Pavel Anzenbacher, Jr., Chem. Mater, 2005, 17, 5238-5241.
[28] Y. Shirai, A. J. Osgood, Y. Zhao, Y. Yao, L. Saudan, H. Yang, C.-Y. Hung, L. B. Alemany, T. Sasaki, J. F. Morin, J. M. Guerrero, K. F. Kelly, and J. M. Tour., J. Am. Chem. Soc. 2006, 128, 4854-4864.

[1] Jitendra R. Harjani, Robert D. Singer, M. Teresa Garcia and Peter Scammells., Green Chem. 2009, 11, 83-90.
[2] C.-H. Lee, F.-Y. Su, Y.-H. Lin, C.-H. Chou and K.-M. Lee., CrystEngComm 2011, 13, 2318-2323.
[3] W.-J. Chang, P.-S. Su and K.-M. Lee, CrystEngComm 2018, 20, 7248-7255.
[4] Bernd Schmidt and Oliver Kunz., Eur. J. Org. Chem. 2012, 1008-1018.
指導教授 林子超(Tzu-Chau Lin) 審核日期 2020-8-20
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明