參考文獻 |
Arae, T., Morita, K., Imahori, R., Suzuki., Y, Yasuda., S, Sato., T, Yamaguchi, J.,
Chiba, Y. (2019) Identification of Arabidopsis CCR4-NOT complexes with pumilio RNA-binding proteins, APUM5 and APUM2. Plant Cell Physiol. 60, 2015-2025.
Aslam, A., Mittal, S., Koch, F., Andrau, J. C., and Winkler, G. S. (2009) The Ccr4-NOT deadenylase subunits CNOT7 and CNOT8 have overlapping roles and modulate cell proliferation. Mol. Biol. Cell 20, 3840-3850.
Belostotsky, D. A. , and Sieburth, L. E. (2009) Kill the messenger: mRNA decay and plant development. Curr. Opin. Plant Biol. 12, 96-102.
Bologna, N.G., and Voinnet, O. (2014). The diversity, biogenesis, and activities of endogenous silencing small RNAs in Arabidopsis. Annu Rev Plant Biol 65, 473-503.
Chakraborty, A., and Bhattacharjee, S. (2015). Differential competence of redox-regulatory mechanism under extremes of temperature determines growth performances and cross tolerance in two indica rice cultivars. J Plant Physiol 176, 65-77.
Chan, M. T., and Yu, S. M. (1998a) The 3′ untranslated region of a rice alpha-amylase gene functions as a sugar-dependent mRNA stability determinant. Proc. Natl. Acad. Sci. U.S.A. 95, 6543-6547.
Chan, M. T., and Yu, S. M. (1998b) The 3′ untranslated region of a rice alpha-amylase gene mediates sugar-dependent abundance of mRNA. Plant J. 15, 685-695.
Chang, H., Lim, J., Ha, M., and Kim, V. N. (2014) TAIL-seq: genome-wide determination of poly(A) tail length and 3′ end modifications. Mol. Cell 53, 1044-1052.
Chen, P. W., Lu, C. A., Yu, T. S., Tseng, T. H., Wang, C. S., and Yu, S. M. (2002) Rice alpha-amylase transcriptional enhancers direct multiple mode regulation of promoters in transgenic rice. J. Biol. Chem. 277, 13641-13649.
Chiba, Y., Johnson, M.A., Lidder, P., Vogel, J.T., van Erp, H., and Green, P.J. (2004). AtPARN is an essential poly(A) ribonuclease in Arabidopsis. Gene 328, 95-102.
Chiba, Y., and Green, P. J. (2009) mRNA degradation machinery in plants. J. Plant Biol. 52, 114-124.
Chou, W. L., Chung, Y. L., Fang, J. C., and Lu, C. A. (2017) Novel interaction between CCR4 and CAF1 in rice CCR4-NOT deadenylase complex. Plant Mol. Biol. 93, 79-96.
Chou, W. L., Huang, L. F., Fang, J. C., Yeh, C. H., Hong, C. Y., Wu, S. J., et al. (2014) Divergence of the expression and subcellular localization of CCR4-associated factor 1 (CAF1) deadenylase proteins in Oryza sativa. Plant Mol. Biol. 85, 443-458.
Collart, M. A., and Panasenko, O. O. (2012) The Ccr4--not complex. Gene 492, 42-53.
Dai, X., Xu, Y., Ma, Q., Xu, W., Wang, T., Xue, Y., and Chong, K. (2007). Overexpression of an R1R2R3 MYB gene, OsMYB3R-2, increases tolerance to freezing, drought, and salt stress in transgenic Arabidopsis. Plant Physiol 143, 1739-1751.
Darnell, J. E., Philipson, L., Wall, R., and Adesnik, M. (1971) Polyadenylic acid sequences: role in conversion of nuclear RNA into messenger RNA. Science 174, 507-510.
de Freitas, G.M., Thomas, J., Liyanage, R., Lay, J.O., Basu, S., Ramegowda., V., do Amaral, M.N., Benitez, L.C., Bolacel Braga, E.J., Pereira, A. (2019). Cold tolerance response mechanisms revealed through comparative analysis of gene and protein expression in multiple rice genotypes. PLoS ONE 14: e0218019.
Deng, C., Ye, H., Fan, M., Pu, T., and Yan, J. (2017). The rice transcription factors OsICE confer enhanced cold tolerance in transgenic Arabidopsis. Plant Signal Behav 12, e1316442.
Ding, Y., Shi, Y., and Yang, S. (2019). Advances and challenges in uncovering cold tolerance regulatory mechanisms in plants. New Phytol 222, 1690-1704.
Dykxhoorn, D. M., Novina, C. D., and Sharp, P. A. (2003) Killing the messenger: Short RNAs that silence gene expression. Nat. Rev. Mol. Cell Biol. 4, 457-467.
Fabian, M.R., Frank, F., Rouya, C., Siddiqui, N., Lai, W.S., Karetnikov, A., Blackshear, P.J., Nagar, B., and Sonenberg, N. (2013). Structural basis for the recruitment of the human CCR4-NOT deadenylase complex by tristetraprolin. Nat Struct Mol Biol 20, 735-739.
Fang, J.C., Liu, H.Y., Tsai, Y.C., Chou, W.L., Chang, C.C., and Lu, C.A. (2019). A CCR4 association factor 1, OsCAF1B, participates in the alphaAmy3 mRNA poly(A) tail shortening and plays a role in germination and seedling growth. Plant Cell Physiol 61, 554–564.
Ge, L.F., Chao, D.Y., Shi, M., Zhu, M.Z., Gao, J.P., and Lin, H.X. (2008). Overexpression of the trehalose-6-phosphate phosphatase gene OsTPP1 confers stress tolerance in rice and results in the activation of stress responsive genes. Planta 228, 191-201.
Gilmour, S.J., Zarka, D.G., Stockinger, E.J., Salazar, M.P., Houghton, J.M., and Thomashow, M.F. (1998). Low temperature regulation of the Arabidopsis CBF family of AP2 transcriptional activators as an early step in cold-induced COR gene expression. Plant J 16, 433-442.
Gross, B.L., and Zhao, Z. (2014). Archaeological and genetic insights into the origins of domesticated rice. Proc Natl Acad Sci U S A 111, 6190-6197.
Han, G., Wang, M., Yuan, F., Sui, N., Song, J., and Wang, B. (2014). The CCCH zinc finger protein gene AtZFP1 improves salt resistance in Arabidopsis thaliana. Plant Mol Biol 86, 237-253.
Hashimoto, M., and Komatsu, S. (2007). Proteomic analysis of rice seedlings during cold stress. Proteomics 7, 1293-1302.
Hussain, S., Khan, F., Hussain, H.A., and Nie, L. (2016). Physiological and Biochemical mechanisms of seed priming-induced chilling tolerance in rice cultivars. Front Plant Sci 7, 116.
Ho, S. L., Chao, Y. C., Tong, W. F., Yu, S. M. (2001) Sugar coordinately and differentially regulates growth- and stress-related gene expression via a complex signal transduction network and multiple control mechanisms. Plant Physiol. 125(2):877-90.
Ho, S. L., Huang, L. F., Lu, C. A., He, S. L., Wang, C. C., Yu, S. P., et al. (2013) Sugar starvation- and GA-inducible calcium-dependent protein kinase 1 feedback regulates GA biosynthesis and activates a 14-3-3 protein to confer drought tolerance in rice seedlings. Plant Mol. Biol. 81, 347-361.
Hussain, S., Khan, F., Hussain, H.A., and Nie, L. (2016). Physiological and Biochemical mechanisms of seed priming-induced chilling tolerance in rice cultivars. Front Plant Sci 7, 116.
Ito, Y., Katsura, K., Maruyama, K., Taji, T., Kobayashi, M., Seki, M., Shinozaki, K., and Yamaguchi-Shinozaki, K. (2006). Functional analysis of rice DREB1/CBF-type transcription factors involved in cold-responsive gene expression in transgenic rice. Plant Cell Physiol 47, 141-153.
Jaglo-Ottosen, K.R., Gilmour, S.J., Zarka, D.G., Schabenberger, O., and Thomashow, M.F. (1998). Arabidopsis CBF1 overexpression induces COR genes and enhances freezing tolerance. Science 280, 104-106.
Jambunathan, N. (2010). Determination and detection of reactive oxygen species (ROS), lipid peroxidation, and electrolyte leakage in plants. Methods Mol Biol 639, 292-298.
Jayne, S., Zwartjes, C. G., van Schaik, F. M., and Timmers, H. T. (2006) Involvement of the SMRT/NCoR-HDAC3 complex in transcriptional repression by the CNOT2 subunit of the human Ccr4-Not complex. Biochem. J. 398, 461-467.
Jiao, C., and Duan, Y. (2019). The role of IP3 in NO-enhanced chilling tolerance in Peach Fruit. J Agric Food Chem 67, 8312-8318.
Karrer, E. E., Litts, J. C., and Rodriguez, R. L. (1991) Differential expression of α-amylase genes in germinating rice and barley seeds. Plant Mol. Biol. 16, 797-805.
Koch, K. (2004) Sucrose metabolism: regulatory mechanisms and pivotal roles in sugar sensing and plant development. Curr. Opin. Plant Biol. 7, 235-246.
Koch, K. E. (1996) Carbohydrate-modulated gene expression in plants. Annu. Rev. Plant Physiol. Plant Mol. Biol. 47, 509-540.
Kojima, S., Gendreau, K. L., Sher-Chen, E. L., Gao, P., and Green, C. B. (2015) Changes in poly(A) tail length dynamics from the loss of the circadian deadenylase Nocturnin. Sci. Rep. 5, 17059.
Kojima, S., and Green, C. B. (2015) Analysis of circadian regulation of poly(A)-tail length. Methods Enzymol. 551, 387-403.
Korner, C.G., Wormington, M., Muckenthaler, M., Schneider, S., Dehlin, E., and Wahle, E. (1998). The deadenylating nuclease (DAN) is involved in poly(A) tail removal during the meiotic maturation of Xenopus oocytes. The EMBO journal 17, 5427-5437.
Kuhn, U., and Wahle, E. (2004) Structure and function of poly(A) binding proteins. Biochim. Biophys. Acta 1678, 67-84.
Lee, B.H., Henderson, D.A., and Zhu, J.K. (2005). The Arabidopsis cold-responsive transcriptome and its regulation by ICE1. Plant Cell 17, 3155-3175.
Lee, E.K., Kwon, M., Ko, J.H., Yi, H., Hwang, M.G., Chang, S., and Cho, M.H. (2004). Binding of sulfonylurea by AtMRP5, an Arabidopsis multidrug resistance-related protein that functions in salt tolerance. Plant Physiol 134, 528-538.
Lee, J. E., Lee, J. Y., Trembly, J., Wilusz, J., Tian, B., and Wilusz, C. J. (2012) The PARN deadenylase targets a discrete set of mRNAs for decay and regulates cell motility in mouse myoblasts. PLoS Genet. 8, e1002901.
Lee, S.C., Huh, K.W., An, K., An, G., and Kim, S.R. (2004). Ectopic expression of a cold-inducible transcription factor, CBF1/DREB1b, in transgenic rice (Oryza sativa L.). Mol Cells 18, 107-114.
Liang, W., Li, C., Liu, F., Jiang, H., Li, S., Sun, J. et al. (2009) The Arabidopsis homologs of CCR4-associated factor 1 show mRNA deadenylation activity and play a role in plant defence responses. Cell Res. 19, :307-316.
Lin, Q., Yang, J., Wang, Q., Zhu, H., Chen, Z., Dao, Y., and Wang, K. (2019). Overexpression of the trehalose-6-phosphate phosphatase family gene AtTPPF improves the drought tolerance of Arabidopsis thaliana. BMC Plant Biol 19, 381.
Liu, C., Wu, Y., and Wang, X. (2012). bZIP transcription factor OsbZIP52/RISBZ5: a potential negative regulator of cold and drought stress response in rice. Planta 235, 1157-1169.
Liu, C., Ou, S., Mao, B., Tang, J., Wang, W., Wang, H., Cao, S., Schlappi, M.R., Zhao, B., Xiao, G., Wang, X., and Chu, C. (2018). Early selection of bZIP73 facilitated adaptation of japonica rice to cold climates. Nat Commun 9, 3302.
Liu, Q., Kasuga, M., Sakuma, Y., Abe, H., Miura, S., Yamaguchi-Shinozaki, K., and Shinozaki, K. (1998). Two transcription factors, DREB1 and DREB2, with an EREBP/AP2 DNA binding domain separate two cellular signal transduction pathways in drought- and low-temperature-responsive gene expression, respectively, in Arabidopsis. Plant Cell 10, 1391-1406.
Liu, Y. K., Huang, L. F., Ho, S. L., Liao, C. Y., Liu, H. Y., Lai, Y. H.,et al. (2012) Production of mouse granulocyte-macrophage colony-stimulating factor by gateway technology and transgenic rice cell culture. Biotechnol. Bioeng. 109, 1239-1247.
Loreto, F., and Velikova, V. (2001). Isoprene produced by leaves protects the photosynthetic apparatus against ozone damage, quenches ozone products, and reduces lipid peroxidation of cellular membranes. Plant Physiol 127, 1781-1787.
Lu, C. A., Ho, T. H., Ho, S. L., and Yu, S. M. (2002) Three novel MYB proteins with one DNA binding repeat mediate sugar and hormone regulation of alpha-amylase gene expression. Plant Cell 14, 1963-1980.
Lu, C. A. Lim, E. K., and Yu, S. M. (1998) Sugar response sequence in the promoter of a rice alpha-amylase gene serves as a transcriptional enhancer. J. Biol. Chem. 273, 10120-10131.
Lu, C.A., Huang, C.K., Huang, W.S., Huang, T.S., Liu, H.Y., and Chen, Y.F. (2020). DEAD-box RNA helicase 42 plays a critical role in pre-mRNA splicing under cold Stress. Plant Physiol 182, 255-271.
Mader, S., Lee, H., Pause, A., and Sonenberg, N. (1995) The translation initiation factor eIF-4E binds to a common motif shared by the translation factor eIF-4 gamma and the translational repressors 4E-binding proteins. Mol. Cell Biol. 15, 4990-4997.
Maquat, L. E., and Carmichael, G. G. (2001) Quality control of mRNA function. Cell 104, 173-176.
Medina, J., Bargues, M., Terol, J., Perez-Alonso, M., and Salinas, J. (1999). The Arabidopsis CBF gene family is composed of three genes encoding AP2 domain-containing proteins whose expression Is regulated by low temperature but not by abscisic acid or dehydration. Plant Physiol 119, 463-470.
Meyer, S., Temme, C., and Wahle, E. (2004) Messenger RNA turnover in eukaryotes: pathways and enzymes. Crit. Rev. Biochem. Mol. Biol. 39, 197-216.
Miller, J.E., and Reese, J.C. (2012). Ccr4-Not complex: the control freak of eukaryotic cells. Crit Rev Biochem Mol Biol 47, 315-333.
Mittal, S., Aslam, A., Doidge, R., Medica, R., and Winkler, G. S. (2011) The Ccr4a (CNOT6) and Ccr4b (CNOT6L) deadenylase subunits of the human Ccr4-Not complex contribute to the prevention of cell death and senescence. Mol. Biol. Cell 22, 748-758.
Morino, S., Imataka, H., Svitkin, Y. V., Pestova, T. V., and Sonenberg, N. (2000) Eukaryotic translation initiation factor 4E (eIF4E) binding site and the middle one-third of eIF4GI constitute the core domain for cap-dependent translation, and the C-terminal one-third functions as a modulatory region. Mol. Cell Biol. 20, 468-477.
Morita, M., Suzuki, T., Nakamura, T., Yokoyama, K., Miyasaka, T., and Yamamoto, T. (2007) Depletion of mammalian CCR4b deadenylase triggers elevation of the p27Kip1 mRNA level and impairs cell growth. Mol. Cell Biol. 27, 4980-4990.
Mulder, K. W., Brenkman, A. B., Inagaki, A., van den Broek, N. J., and Timmers, H. T. (2007) Regulation of histone H3K4 tri-methylation and PAF complex recruitment by the Ccr4-Not complex. Nucleic Acids Res. 35, 2428-2439.
Mulder, K. W., Winkler, G. S, and Timmers, H. T. (2005) DNA damage and replication stress induced transcription of RNR genes is dependent on the Ccr4-Not complex. Nucleic Acids Res. 33, 6384-6392.
Murashige, T., and Skoog, F. (1962) A revised medium for rapid growth and bioassays with tobacco tissue cultures. Physiol. Plant 15, 473-497.
Orvar, B.L., Sangwan, V., Omann, F., and Dhindsa, R.S. (2000). Early steps in cold sensing by plant cells: the role of actin cytoskeleton and membrane fluidity. Plant J 23, 785-794.
Palma, F., Carvajal, F., Jimenez-Munoz, R., Pulido, A., Jamilena, M., and Garrido, D. (2019). Exogenous gamma-aminobutyric acid treatment improves the cold tolerance of Zucchini fruit during postharvest storage. Plant Physiol Biochem 136, 188-195.
Park, M.R., Yun, K.Y., Mohanty, B., Herath, V., Xu, F., Wijaya, E., Bajic, V.B., Yun, S.J., and De Los Reyes, B.G. (2010). Supra-optimal expression of the cold-regulated OsMyb4 transcription factor in transgenic rice changes the complexity of transcriptional network with major effects on stress tolerance and panicle development. Plant Cell Environ 33, 2209-2230.
Parker, R., and Song, H. (2004). The enzymes and control of eukaryotic mRNA turnover. Nat Struct Mol Biol 11, 121-127.
Petit, A. P., Wohlbold, L., Bawankar, P., Huntzinger, E., Schmidt, S., Izaurralde, E.et al. (2012) The structural basis for the interaction between the CAF1 nuclease and the NOT1 scaffold of the human CCR4-NOT deadenylase complex. Nucleic Acids Res. 40, 11058-11072.
Rolland, F., Moore, B., and Sheen, J. (2002) Sugar sensing and signaling in plants. Plant Cell 14, S185-205.
Sakai, A., Chibazakura, T., Shimizu, Y., and Hishinuma, F. (1992) Molecular analysis of POP2 gene, a gene required for glucose-derepression of gene expression in Saccharomyces cerevisiae. Nucleic Acids Res. 20, 6227-6233.
Salles, F. J., and Strickland, S. (1995) Rapid and sensitive analysis of mRNA polyadenylation states by PCR. PCR Methods Appl. 4, 317-321.
Sandler, H., Kreth, J., Timmers, H.T., and Stoecklin, G. (2011). Not1 mediates recruitment of the deadenylase Caf1 to mRNAs targeted for degradation by tristetraprolin. Nucleic Acids Res 39, 4373-4386.
Sanghera, G.S., Wani, S.H., Hussain, W., and Singh, N.B. (2011). Engineering cold stress tolerance in crop plants. Curr Genomics 12, 30-43.
Sarowar, S., Oh, H. W., Cho, H. S., Baek, K. H., Seong, E. S., Joung, Y. H.et al. (2007) Capsicum annuum CCR4-associated factor CaCAF1 is necessary for plant development and defence response. Plant J. 51, 792-802.
Sheu, J. J., Yu, T. S., Tong, W. F., and Yu, S. M. (1996) Carbohydrate starvation stimulates differential expression of rice alpha-amylase genes that is modulated through complicated transcriptional and posttranscriptional processes. J. Biol. Chem. 271, 26998-27004.
Sieburth, L.E., and Vincent, J.N. (2018). Beyond transcription factors: roles of mRNA decay in regulating gene expression in plants. F1000 Faculty Rev:1940Subtelny, A. O., Eichhorn, S. W., Chen, G. R., Sive, H., and Bartel, D. P. (2014) Poly(A)-tail profiling reveals an embryonic switch in translational control. Nature 508, 66-71.
Su, C.F., Wang, Y.C., Hsieh, T.H., Lu, C.A., Tseng, T.H., and Yu, S.M. (2010). A novel MYBS3-dependent pathway confers cold tolerance in rice. Plant Physiol 153, 145-158.
Sun, C.B., Suresh, A., Deng, Y.Z., and Naqvi, N.I. (2006). A multidrug resistance transporter in Magnaporthe is required for host penetration and for survival during oxidative stress. Plant Cell 18, 3686-3705.
Suzuki, Y., Arae, T., Green, P. J., Yamaguchi, J., and Chiba, Y. (2015) AtCCR4a and AtCCR4b are involved in determining the poly(A) length of granule-bound starch synthase 1 transcript and modulating sucrose and starch metabolism in Arabidopsis thaliana. Plant Cell Physiol. 56, 863-874.
Takasaki, H., Maruyama, K., Kidokoro, S., Ito, Y., Fujita, Y., Shinozaki, K., Yamaguchi-Shinozaki, K., and Nakashima, K. (2010). The abiotic stress-responsive NAC-type transcription factor OsNAC5 regulates stress-inducible genes and stress tolerance in rice. Mol Genet Genomics 284, 173-183.
Tharun, S., and Parker, R. (2001). Targeting an mRNA for decapping: displacement of translation factors and association of the Lsm1p-7p complex on deadenylated yeast mRNAs. Mol Cell 8, 1075-1083.
Tarun, S. Z. Jr., and Sachs, A. B. (1996) Association of the yeast poly(A) tail binding protein with translation initiation factor eIF-4G. EMBO J. 15, 7168-7177.
Temme, C., Zaessinger, S., Meyer, S., Simonelig, M., and Wahle, E. (2004) A complex containing the CCR4 and CAF1 proteins is involved in mRNA deadenylation in Drosophila. EMBO J. 23, 2862-2871.
Tharun, S., and Parker, R. (2001) Targeting an mRNA for decapping: displacement of translation factors and association of the Lsm1p-7p complex on deadenylated yeast mRNAs. Mol. Cell 8, 1075-1083
Tucker, M., Staples, R. R., Valencia-Sanchez, M. A., Muhlrad, D., and Parker, R. (2002) Ccr4p is the catalytic subunit of a Ccr4p/Pop2p/Notp mRNA deadenylase complex in Saccharomyces cerevisiae. EMBO J. 21, 1427-1436.
Tucker, M., Valencia-Sanchez, M. A., Staples, R. R., Chen, J., Denis, C. L.,and Parker, R. (2001) The transcription factor associated Ccr4 and Caf1 proteins are components of the major cytoplasmic mRNA deadenylase in Saccharomyces cerevisiae. Cell 104, 377-386.
van Hoof, A., and Parker R (1999) The exosome: a proteasome for RNA? Cell 99, 347-350
Vannini, C., Locatelli, F., Bracale, M., Magnani, E., Marsoni, M., Osnato, M., Mattana, M., Baldoni, E., and Coraggio, I. (2004). Overexpression of the rice Osmyb4 gene increases chilling and freezing tolerance of Arabidopsis thaliana plants. Plant J 37, 115-127.
Wahle, E., and Winkler, G.S. (2013). RNA decay machines: deadenylation by the Ccr4-not and Pan2-Pan3 complexes. Biochim Biophys Acta 1829, 561-570.
Walley, J. W., Kelley, D. R., Nestorova, G., Hirschberg, D. L., and Dehesh, K. (2010a) Arabidopsis deadenylases AtCAF1a and AtCAF1b play overlapping and distinct roles in mediating environmental stress responses. Plant Physiol. 152, 866-875.
Walley, J. W., Kelley, D. R., Savchenko, T., and Dehesh, K. (2010b) Investigating the function of CAF1 deadenylases during plant stress responses. Plant Signal Behav. 5, 802-805.
Wang, C., Wei, Q., Zhang, K., Wang, L., Liu, F., Zhao, L., Tan, Y., Di, C., Yan, H., Yu, J., Sun, C., Chen, W.J., Xu, W., and Su, Z. (2013). Down-regulation of OsSPX1 causes high sensitivity to cold and oxidative stresses in rice seedlings. PLoS One 8, e81849.
Webster, M.W., Stowell, J.A., and Passmore, L.A. (2019). RNA-binding proteins distinguish between similar sequence motifs to promote targeted deadenylation by Ccr4-Not. Elife 8.
Wilusz, C. J., Gao, M., Jones, C. L., Wilusz, J., and Peltz, S. W. (2001) Poly(A)-binding proteins regulate both mRNA deadenylation and decapping in yeast cytoplasmic extracts. RNA 7, 1416-1424.
Xie, G., Kato, H., and Imai, R. (2012). Biochemical identification of the OsMKK6-OsMPK3 signalling pathway for chilling stress tolerance in rice. Biochem J 443, 95-102.
Yang, Y.W., Chen, H.C., Jen, W.F., Liu, L.Y., and Chang, M.C. (2015). Comparative transcriptome analysis of shoots and roots of TNG67 and TCN1 rice seedlings under cold stress and following subsequent recovery: insights into metabolic pathways, phytohormones, and transcription factors. PLoS One 10, e0131391.
Yu, S. M., Kuo, Y. H., Sheu, G., Sheu, Y. J., and Liu, L. F. (1991) Metabolic derepression of alpha-amylase gene expression in suspension-cultured cells of rice. J. Biol. Chem. 266, 21131-21137.
Yu, S. M., Lee, Y. C., Fang, S. C., Chan, M. T., Hwa, S. F., and Liu, L. F. (1996) Sugars act as signal molecules and osmotica to regulate the expression of alpha-amylase genes and metabolic activities in germinating cereal grains. Plant Mol. Biol. 30, 1277-89.
Zhang, D., Chen, L., Li, D., Lv, B., Chen, Y., Chen, J.et al. (2014) OsRACK1 is involved in abscisic acid- and H2O2-mediated signaling to regulate seed germination in rice (Oryza sativa, L.). PLoS ONE 9, e97120.
Zhang, Y., Su, J., Duan, S., Ao, Y., Dai, J., Liu, J. et al. (2011) A highly efficient rice green tissue protoplast system for transient gene expression and studying light/chloroplast-related processes. Plant Methods 7, 30.
Zheng, D., and Tian, B. (2014) Sizing up the poly(A) tail: insights from deep sequencing. Trends Biochem. Sci. 39, 255-257.
Zwartjes, C. G., Jayne, S., van den Berg, D. L., and Timmers, H. T. (2004) Repression of promoter activity by CNOT2, a subunit of the transcription regulatory Ccr4-not complex. J. Biol. Chem. 279, 10848-10854. |