博碩士論文 107821022 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:92 、訪客IP:18.225.195.163
姓名 陳奕勳(Yi-Hsun Chen)  查詢紙本館藏   畢業系所 生命科學系
論文名稱 嗜酸熱硫化葉菌酮醇酸還原異構酶與輔酶共晶體結構及活性分析
(Cofactor bi-specificity in Sulfolobus acidocaldarius Ketol-Acid Reductoisomerase as revealed by two crystal structures and enzyme activity assays)
相關論文
★ 硫化屬古生菌中的酮醇酸還原異構酶結構分析★ 古生菌嗜酸熱硫化葉菌的乙醯乳酸還原異構酶的晶體結構以及穩定性
★ 硫化葉菌屬中耐熱酮醇酸還原異構酶之結構性及功能性分析★ 嗜酸熱硫化葉菌的DNA結合蛋白Saci_0101之結構與功能分析
★ PDCD5蛋白在Sulfolobus solfataricus 古生菌的結構與功能分析★ 嗜酸熱硫化葉菌中去氧核醣核酸結合蛋白Saci_1212之結構性及功能性分析
★ 硫磺礦硫化葉菌程序性細胞死亡蛋白5晶體結構分析及其與DNA的相互作用★ 嗜酸熱硫化葉菌中DNA結合蛋白Sac10b之結構分析及其與DNA相互作用
★ 脂肪酸特異互養棲熱菌酮醇酸還原異構酶之晶體結構及活性分析
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   至系統瀏覽論文 (2025-6-30以後開放)
摘要(中) 中文摘要
酮醇酸還原異構酶(KARI) 是支鏈胺基酸(BCAA) 生物合成途徑中的第二個酵素,
為雙功能酶可進行兩步驟的催化反應。第一步進行鎂離子專一性的異構反應,隨後為輔
酶NAD(P)H 與鎂離子或其他二價金屬離子(錳離子或鈷離子) 依賴性的還原反應。在
先前研究結果,已得知嗜酸熱硫化葉菌的KARI (Sac-KARI) 具有熱穩定性與輔酶雙專
一性,可以利用NADPH 與NADH 兩種輔酶進行催化反應,且相對偏好於NADPH 。
在本次研究中,我們利用X-ray 蛋白質晶體繞射,解析出Sac-KARI-NADPH 與
Sac-KARI-NADH 兩種複合物晶體結構,解析度分別為2.72 Å 與 1.68 Å 。分析
Sac-KARI 與兩種輔酶複合物結構,發現於活化位β2αB-loop 構形並無明顯改變,但在
Sac-KARI-NADH 結構中發現來自母液的磷酸根佔據了相對於Sac-KARI-NADPH 結
構中NADPH 的2 端磷酸根基團的位置。並於高溫的酵素動力學實驗,比較不同的緩
衝液(HEPES 與磷酸鹽) 對Sac-KARI 相對活性的影響。其結果表示當酵素在使用
NADH 時,在緩衝液含有磷酸根離子環境中,會有相對較高的活性。證實了磷酸根或
是硫酸根離子是可以幫助Sac-KARI 在使用NADH 時的催化活性 。
摘要(英) Abstract
Ketol-acid reductoisomerase (KARI) is the second enzyme in branched chain amino acid
(BCAA) biosynthetic pathway. The catalytic reaction of this bi-functional enzyme is consisted
of two steps, including Mg2+-dependent alkyl migration, followed by the
NAD(P)H-dependent reduction reaction. In the previous study, we found that KARI from
Sulfolobus acidocaldarius (Sac-KARI) is a thermostable and bi-cofactor-utilizing enzyme. In
this study, we determined two crystal structures of Sac-KARI-NADPH (2.72 Å) and
Sac-KARI-NADH (1.68 Å) complexes. The crystal structural analysis shows that R49
undergoes the typical π-cation stacking interaction against the adenine ring and forms a salt
bridge with the 2´-phosphate of the NADPH. The S53 forms H bonds both with 2´-phosphate
and 3´-OH of the NADPH. The R49 and S53 make similar contacts with NADH, however, the
phosphate ions mimic the 2´-phosphate of NADPH in the cofactor binding pocket. The
enzyme activity assays further confirm that the Sac-KARI has higher activity in the phosphate
than that in the HEPES buffer at 50ºC by using NADH as a cofactor. On the other hand, the
optimum pH for Sac-KARI activity is in the pH range of 7-7.5 at 50ºC.
關鍵字(中) ★ 嗜酸熱硫化葉菌
★ 酮醇酸還原異構酶
★ 蛋白質結晶學
★ 輔酶雙特異性
關鍵字(英) ★ Sulfolobus acidocaldarius
★ Ketol-acid reductoisomerase
★ X-ray crystallography
★ Cofactor bi-specificity
論文目次 目錄
中文摘要 ....................................................................................................................................I
英文摘要 .................................................................................................................................. II
致謝.........................................................................................................................................III
目錄 .........................................................................................................................................IV
圖目錄 ................................................................................................................................... VII
表目錄 .....................................................................................................................................IX
第一章、緒論 ...........................................................................................................................1
1-1 嗜酸熱硫化葉菌(Sulfolobus acidocaldarius) .......................................................1
1-2 酮醇酸還原異構酶....................................................................................................2
1-2-1 支鏈胺基酸(Branched-Chain Amino Acids, BCAA) 的生物合成途徑.....2
1-2-2 酮醇酸還原異構酶的催化機制....................................................................3
1-2-3 酮醇酸還原異構酶的分類方式與結構介紹................................................3
1-2-4 相關應用........................................................................................................6
1-3 研究動機....................................................................................................................9
第二章、實驗內容與方法.....................................................................................................10
2-1 建構目標蛋白質基因(Sac-KARI) 於載體(pET-21a) ......................................10
2-1-1 從嗜酸熱硫化葉菌全基因體中萃取出目標基因......................................10
2-1-2 聚合酶連鎖反應(Polymerase Chain Reaction, PCR) 引子設計.............. 11
2-1-3 限制酶切割反應(Digestion) ....................................................................13
2-1-4 連接反應(Ligation) ..................................................................................14
2-1-5 勝任細胞(Competent cell) ........................................................................14
2-1-6 轉形作用(Transformation) .......................................................................15
2-1-7 菌落聚合酶連鎖反應(Colony PCR) .......................................................15
2-1-8 利用瓊脂糖凝膠電泳(Agarose gel electrophoresis) 確認目標基因.......17
2-1-9 核酸定序檢測(Sequencing) .....................................................................18
2-2 蛋白質表現(Protein expression) .........................................................................19
2-2-1 篩選表現條件之時程實驗(Time Course) ...............................................19
2-2-2 十二烷基硫酸鈉聚丙烯醯胺凝膠電泳(SDS-PAGE) .............................19
2-2-3 大量表現蛋白質..........................................................................................21
2-3 蛋白質純化(Protein purification) ........................................................................22
2-3-1 利用超音波細胞破碎儀(Ultrasonic Processor) 破壞細菌細胞...............22
2-3-2 加熱處理......................................................................................................22
2-3-3 離心及過濾去除沉澱蛋白質......................................................................23
2-3-4 固定化金屬親和性層析法..........................................................................23
2-3-5 濃縮蛋白質(Concentrate protein) ............................................................25
2-3-6 凝膠過濾法(Gel filtration, Size Exclusion Chromatography) .................26
2-4 利用X-ray 蛋白質晶體繞射解析結構..................................................................27
2-4-1 蛋白質結晶(Crystallization) ....................................................................27
2-4-2 預長晶測試實驗(Pre-crystallization Test, PCT) ......................................28
2-4-3 高通量篩選蛋白質長晶條件......................................................................30
2-4-4 收集晶體繞射數據(Data collection) .......................................................31
2-4-5 利用電腦軟體分析數據(Refinement) .....................................................32
2-5 蛋白質活性測試......................................................................................................34
2-5-1 輔酶 (Coenzyme) 製備...............................................................................34
2-5-2 受質(Substrate) 製備.................................................................................34
2-5-3 酵素活性實驗..............................................................................................35
第三章、實驗結果.................................................................................................................36
3-1 核酸定序檢測..........................................................................................................36
3-2 蛋白質表現..............................................................................................................37
3-3 蛋白質純化..............................................................................................................38
3-4 蛋白質晶體繞射之結構解析..................................................................................40
3-4-1 蛋白質結晶條件..........................................................................................40
3-4-2 蛋白質結構解析..........................................................................................46
3-5 蛋白質活性測試......................................................................................................51
3-5-1 Sac-KARI 對鈣離子利用之酵素活性測試.................................................51
3-5-2 Sac-KARI 在不同pH 值中之酵素活性測試............................................53
3-5-3 Sac-KARI 在不同緩衝液中之酵素活性測試.............................................56
第四章、討論.........................................................................................................................58
4-1 比較Sso-KARI 與Sac-KARI 在不同pH 值下的酵素活性變化...................58
4-2 分析不同KARI 活化位上之胺基酸側鏈使用輔酶催化之策略........................59
4-3 Sac-KARI 活化位在催化過程中的誘導契合機制................................................63
第五章、結論.........................................................................................................................67
參考文獻 .................................................................................................................................68
附錄 .........................................................................................................................................71

圖目錄
圖 1、三域演化樹。...............................................................................................................1
圖 2、支鏈胺基酸的生物合成途徑。...................................................................................2
圖 3、KARI 兩步驟的催化反應。.....................................................................................3
圖 4、Sso-KARI-NADPH-CPD 之活化位上的結構細節。..............................................5
圖 5、對KARI 的β2αB-loop 序列比對與分類歸納。....................................................6
圖 6、基因工程大腸桿菌的生物合成途徑以生產異丁醇。...............................................7
圖 7、在KARI 催化反應中的受質、中間物及其類似物。.............................................8
圖 8、載體pET-21a 圖譜之重組與表現區段。................................................................ 11
圖 9、限制酶剪切反應之序列與切口處, NdeI (左) , XhoI (右) 。..........................13
圖 10、細菌生長曲線圖。...................................................................................................21
圖 11、Ni-NTA 與目標蛋白質上的His-tag 結合示意圖。.........................................24
圖 12、親和性層析之蛋白質純化流程示意圖。...............................................................24
圖 13、凝膠過濾法之原理示意圖。...................................................................................26
圖 14、蛋白質結晶過程之相變圖。...................................................................................28
圖 15、蒸氣擴散法(座式) 示意圖。.................................................................................28
圖 16、輕微沉澱(Light Precipitate) 與嚴重沉澱(Heavy Amorphous Precipitate)。.....29
圖 17、單孔式96 孔坐式養晶盤。...................................................................................30
圖 18、NAD(P)H 氧化還原形式之340 nm 特徵峰的變化。.......................................35
圖 19、Sac-KARI 蛋白質表現之實驗步驟圖。..............................................................37
圖 20、Sac-KARI 親和性層析法純化結果。..................................................................38
圖 21、Sac-KARI 膠體過濾法純化結果。......................................................................39
圖 22、以Coomassie blue 染色15% SDS-PAGE 來分析Sac-KARI 的純度。..........39
圖 23、Sac-KARI-NADPH 複合物及其活化位的結構。...............................................49
圖 24、Sac-KARI-NADH 複合物及其活化位的結構。.................................................50
圖 25、Sac-KARI 對5 mM 鎂離子之酵素活性測試。.................................................52
圖 26、Sac-KARI 對10 mM 鈣離子之酵素活性測試。...............................................52
圖 27、Sac-KARI 對20 mM 鈣離子之酵素活性測試。...............................................53
圖 28、Sac-KARI 對30 mM 鈣離子之酵素活性測試。...............................................53
圖 29、在25℃ ,不同pH 值的緩衝液中Sac-KARI 利用兩種輔酶的相對活性。.54
圖 30、在50℃ ,不同 pH 值的緩衝液中Sac-KARI 利用兩種輔酶的相對活性。.55
圖 31、在25℃ ,三種不同緩衝液中 Sac-KARI 利用兩種輔酶的相對活性。..........56
圖 32、在50℃ ,三種不同緩衝液中 Sac-KARI 利用兩種輔酶的相對活性。..........57
圖 33、在55℃ ,不同pH 值的緩衝液中Sso-KARI 利用兩種輔酶的相對活性。.58
圖 34、Sac-KARI-NAD(P)H 複合物之β2αB-loop 結構疊圖。 ...................................59
圖 35、Ia-KARI-NADPH 複合物之活化位結構。..........................................................61
圖 36、Ia-KARI-NADH 複合物之活化位結構。............................................................61
圖 37、Ia-KARI-NAD(P)H 複合物之β2αB-loop 結構疊圖。......................................62
圖 38、Sso-KARI-NAD(P)H-CPD 複合物之β2αB-loop 結構疊圖。 ..........................63
圖 39、Sac-KARI-NAD(P)H 對Sac-KARI 之N domain 比對。.................................65
圖 40、Sac-KARI-NAD(P)H 對Sac-KARI 之C domain 比對。.................................65

表目錄
表 1、比較Class I 與Class II KARI 的結構組成。.........................................................4
表 2、對輔酶雙特異性或對輔酶NADH 偏好的KARI 。..............................................9
表 3、Sac-KARI 聚合酶鏈鎖反應配方。........................................................................12
表 4、Sac-KARI 聚合酶鏈鎖反應步驟。........................................................................12
表 5、限制酶剪切反應配方。.............................................................................................13
表 6、接合酶黏合反應配方。.............................................................................................14
表 7、Sac-KARI 菌落聚合酶鏈鎖反應配方。................................................................16
表 8、Sac-KARI 菌落聚合酶鏈鎖反應步驟。................................................................16
表 9、50X TAE Buffer 配製方法。....................................................................................17
表 10、15% SDS-PAGE 膠片配方與不同分子量的蛋白質所適合之膠體濃度。........20
表 11、SDS-PAGE 實驗所使用之緩衝液配方。.............................................................20
表 12、PCT 試劑成分。....................................................................................................29
表 13、PCT 結果與操作建議。........................................................................................29
表 14、Sac-KARI-NADPH-CPD 長晶條件編號與照片。...............................................40
表 15、Sac-KARI-NADPH 長晶條件編號與照片 (1)。................................................41
表 16、Sac-KARI-NADPH 長晶條件編號與照片 (2)。................................................42
表 17、Sac-KARI-NADH 長晶條件編號與照片(1)。...................................................43
表 18、Sac-KARI-NADH 篩選結晶之蛋白質樣品條件與結果(2) ~ (8)。..................44
表 19、Sac-KARI-NADH 長晶條件編號與照片(6)。...................................................44
表 20、手動養晶微調[10.2]-96 結晶條件。....................................................................45
表 21、Sac-KARI-NADH 長晶條件編號與照片(8)。...................................................45
表 22、X-ray 繞射數據收集與處理之參數以及上機晶體的照片。..............................47
表 23、在25℃ ,不同pH 值的緩衝液中Sac-KARI 利用兩種輔酶的酵素專一活性。
.................................................................................................................................................54
表 24、在50℃ ,不同pH 值的緩衝液中Sac-KARI 利用兩種輔酶的酵素專一活性。
.................................................................................................................................................55
表 25、在25℃ ,三種不同緩衝液中 Sac-KARI 利用兩種輔酶的酵素專一活性。..56
表 26、在50℃ ,三種不同緩衝液中 Sac-KARI 利用兩種輔酶的酵素專一活性。..57
表 27、比較不同物種KARI 與配體結合前後的構形變化。.........................................66
參考文獻 1. Brock, T. D.; Brock, K. M.; Belly, R. T.; Weiss, R. L., Sulfolobus: A new genus of
sulfur-oxidizing bacteria living at low pH and high temperature. Archiv für Mikrobiologie
1972, 84 (1), 54-68.
2. Chen, L.; Brügger, K.; Skovgaard, M.; Redder, P.; She, Q.; Torarinsson, E.; Greve, B.;
Awayez, M.; Zibat, A.; Klenk, H.-P.; Garrett, R. A., The Genome of Sulfolobus
acidocaldarius, a Model Organism of the Crenarchaeota. Journal of Bacteriology 2005,
187, 4992-4999.
3. Andersson, A. F.; Lundgren, M.; Eriksson, S.; Rosenlund, M.; Bernander, R.; Nilsson, P.,
Global analysis of mRNA stability in the archaeon Sulfolobus. Genome Biology 2006, 7
(10), R99.
4. Vothknecht, U. C.; Tumbula, D. L., Archaea: from genomics to physiology and the origin
of life. Trends in Cell Biology 1999, 9 (4), 159-161.
5. Chen, C.-Y.; Ko, T.-P.; Lin, K.-F.; Lin, B.-L.; Huang, C.-H.; Chiang, C.-H.; Horng, J.-C.,
NADH/NADPH bi-cofactor-utilizing and thermoactive ketol-acid reductoisomerase from
Sulfolobus acidocaldarius. Scientific Reports 2018, 8 (1), 7176.
6. Wong, S.-H.; Lonhienne, T. G. A.; Winzor, D. J.; Schenk, G.; Guddat, L. W., Bacterial and
Plant Ketol-Acid Reductoisomerases Have Different Mechanisms of Induced Fit during
the Catalytic Cycle. Journal of Molecular Biology 2012, 424 (3), 168-179.
7. Chen, C.-Y.; Chang, Y.-C.; Lin, B.-L.; Lin, K.-F.; Huang, C.-H.; Hsieh, D.-L.; Ko, T.-P.;
Tsai, M.-D., Use of Cryo-EM To Uncover Structural Bases of pH Effect and Cofactor
Bispecificity of Ketol-Acid Reductoisomerase. Journal of the American Chemical Society
2019, 141 (15), 6136-6140.
8. Brinkmann-Chen, S.; Flock, T.; Cahn, J. K. B.; Snow, C. D.; Brustad, E. M.; McIntosh, J.
A.; Meinhold, P.; Zhang, L.; Arnold, F. H., General approach to reversing ketol-acid
reductoisomerase cofactor dependence from NADPH to NADH. Proceedings of the
National Academy of Sciences 2013, 110, 10946-10951.
9. Park, J. H.; Lee, S. Y., Fermentative production of branched chain amino acids: a focus on
metabolic engineering. Appl Microbiol Biotechnol 2010, 85 (3), 491-506.
10. Atsumi, S.; Cann, A. F.; Connor, M. R.; Shen, C. R.; Smith, K. M.; Brynildsen, M. P.;
Chou, K. J. Y.; Hanai, T.; Liao, J. C., Metabolic engineering of Escherichia coli for
1-butanol production. Metabolic Engineering 2008, 10 (6), 305-311.
11. Atsumi, S.; Hanai, T.; Liao, J. C., Non-fermentative pathways for synthesis of
branched-chain higher alcohols as biofuels. Nature 2008, 451 (7174), 86-89.
12. Atsumi, S.; Wu, T.-Y.; Eckl, E.-M.; Hawkins, S. D.; Buelter, T.; Liao, J. C., Engineering
the isobutanol biosynthetic pathway in Escherichia coli by comparison of three aldehyde
reductase/alcohol dehydrogenase genes. Appl Microbiol Biotechnol 2010, 85 (3), 651-657.
13. Bastian, S.; Liu, X.; Meyerowitz, J. T.; Snow, C. D.; Chen, M. M. Y.; Arnold, F. H.,
Engineered ketol-acid reductoisomerase and alcohol dehydrogenase enable anaerobic
2-methylpropan-1-ol production at theoretical yield in Escherichia coli. Metabolic
Engineering 2011, 13 (3), 345-352.
14. Nissen, T. L.; Anderlund, M.; Nielsen, J.; Villadsen, J.; Kielland-Brandt, M. C.,
Expression of a cytoplasmic transhydrogenase in Saccharomyces cerevisiae results in
formation of 2-oxoglutarate due to depletion of the NADPH pool. Yeast 2001, 18 (1),
19-32.
15. Amorim Franco, T. M.; Blanchard, J. S., Bacterial Branched-Chain Amino Acid
Biosynthesis: Structures, Mechanisms, and Drugability. Biochemistry 2017, 56 (44),
5849-5865.
16. Patel, K. M.; Teran, D.; Zheng, S.; Kandale, A.; Garcia, M.; Lv, Y.; Schembri, M. A.;
McGeary, R. P.; Schenk, G.; Guddat, L. W., Crystal Structures of Staphylococcus aureus
Ketol-Acid Reductoisomerase in Complex with Two Transition State Analogues that Have
Biocidal Activity. Chemistry – A European Journal 2017, 23 (72), 18289-18295.
17. Dumas, R.; Cornillon-Bertrand, C.; Guigue-Talet, P.; Genix, P.; Douce, R.; Job, D.,
Interactions of plant acetohydroxy acid isomeroreductase with reaction intermediate
analogues: correlation of the slow, competitive, inhibition kinetics of enzyme activity and
herbicidal effects. Biochemical Journal 1994, 301 (3), 813-820.
18. Bayaraa, T.; Kurz, J. L.; Patel, K. M.; Hussein, W. M.; Bilyj, J. K.; West, N. P.; Schenk, G.;
McGeary, R. P.; Guddat, L. W., Discovery, synthesis and evaluation of a novel ketol-acid
reductoisomerase inhibitor. Chemistry – A European Journal 2020, n/a (n/a), doi:
10.1002/chem.202000899.
19. Brinkmann-Chen, S.; Cahn, J. K. B.; Arnold, F. H., Uncovering rare NADH-preferring
ketol-acid reductoisomerases. Metabolic Engineering 2014, 26, 17-22.
20. Wu, J. T.; Wu, L. H.; Knight, J. A., Stability of NADPH: effect of various factors on the
kinetics of degradation. Clin Chem 1986, 32 (2), 314-319.
21. De Ruyck, J.; Famerée, M.; Wouters, J.; Perpète, E. A.; Preat, J.; Jacquemin, D., Towards
the understanding of the absorption spectra of NAD(P)H/NAD(P)+ as a common indicator
of dehydrogenase enzymatic activity. Chemical Physics Letters 2007, 450 (1), 119-122.
22. Cahn, Jackson K. B.; Brinkmann-Chen, S.; Spatzal, T.; Wiig, Jared A.; Buller, Andrew R.;
Einsle, O.; Hu, Y.; Ribbe, Markus W.; Arnold, Frances H., Cofactor specificity motifs and
the induced fit mechanism in class I ketol-acid reductoisomerases. Biochemical Journal
2015, 468 (3), 475-484.
23. Chen, C.-Y.; Chang, Y.-C.; Lin, B.-L.; Huang, C.-H.; Tsai, M.-D., Temperature-Resolved
Cryo-EM Uncovers Structural Bases of Temperature-Dependent Enzyme Functions.
Journal of the American Chemical Society 2019, 141 (51), 19983-19987.
指導教授 陳青諭(Chin-Yu Chen) 審核日期 2020-7-24
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明