參考文獻 |
[1] K. Dong, X. Peng, & Z. L. Wang, "Fiber/fabric‐based piezoelectric and triboelectric nanogenerators for flexible/stretchable and wearable electronics and artificial intelligence", Advanced Materials, vol. 32, no. 5, p. 1902549, (2020).
[2] J. Curie & P. Curie, "Développement par compression de l′électricité polaire dans les cristaux hémièdres à faces inclinées", Bulletin de minéralogie, vol. 3, no. 4, pp. 90-93, (1880).
[3] M. Birkholz, "Crystal-field induced dipoles in heteropolar crystals II: Physical significance", Zeitschrift für Physik B Condensed Matter, vol. 96, no. 3, pp. 333-340, (1995).
[4] J. Curie & P. Curie, "Contractions et dilatations produites par des tensions électriques dans les cristaux hémièdres à faces inclinées", Compt. Rend, vol. 93, pp. 1137-1140, (1881).
[5] J. Krautkrämer & H. Krautkrämer, "Ultrasonic testing by determination of material properties," in Ultrasonic Testing of Materials: Springer, 1990, pp. 528-550.
[6] D. Damjanovic, "Ferroelectric, dielectric and piezoelectric properties of ferroelectric thin films and ceramics", Reports on Progress in Physics, vol. 61, no. 9, p. 1267, (1998).
[7] K. K. Sappati & S. Bhadra, "Piezoelectric polymer and paper substrates: a review", Sensors, vol. 18, no. 11, p. 3605, (2018).
[8] W. Heywang, K. Lubitz, & W. Wersing, Piezoelectricity: evolution and future of a technology, Springer Science & Business Media, 2008.
[9] T. Ikeda, Fundamentals of piezoelectricity, Oxford university press, 1996.
[10] Q. Zhang, V. Bharti, & G. Kavarnos, "Poly (vinylidene fluoride)(PVDF) and its copolymers", Encyclopedia of Smart Materials, (2002).
[11] K. Omote, H. Ohigashi, & K. Koga, "Temperature dependence of elastic, dielectric, and piezoelectric properties of “single crystalline’’films of vinylidene fluoride trifluoroethylene copolymer", Journal of applied physics, vol. 81, no. 6, pp. 2760-2769, (1997).
[12] H. Kawai, "The piezoelectricity of poly (vinylidene fluoride)", Japanese journal of applied physics, vol. 8, no. 7, p. 975, (1969).
[13] E. Nix & I. Ward, "The measurement of the shear piezoelectric coefficients of polyvinylidene fluoride", Ferroelectrics, vol. 67, no. 1, pp. 137-141, (1986).
[14] N. A. Shepelin, A. M. Glushenkov, V. C. Lussini et al., "New developments in composites, copolymer technologies and processing techniques for flexible fluoropolymer piezoelectric generators for efficient energy harvesting", Energy & Environmental Science, vol. 12, no. 4, pp. 1143-1176, (2019).
[15] L. Rayleigh, "XX. On the equilibrium of liquid conducting masses charged with electricity", The London, Edinburgh, and Dublin Philosophical Magazine and Journal of Science, vol. 14, no. 87, pp. 184-186, (1882).
[16] J. Kameoka & H. Craighead, "Fabrication of oriented polymeric nanofibers on planar surfaces by electrospinning", Applied Physics Letters, vol. 83, no. 2, pp. 371-373, (2003).
[17] J. Kameoka, R. Orth, Y. Yang et al., "A scanning tip electrospinning source for deposition of oriented nanofibres", Nanotechnology, vol. 14, no. 10, p. 1124, (2003).
[18] T. J. Sill & H. A. von Recum, "Electrospinning: applications in drug delivery and tissue engineering", Biomaterials, vol. 29, no. 13, pp. 1989-2006, (2008).
[19] S. Lee & S. K. Obendorf, "Use of electrospun nanofiber web for protective textile materials as barriers to liquid penetration", Textile research journal, vol. 77, no. 9, pp. 696-702, (2007).
[20] D. Sun, C. Chang, S. Li et al., "Near-field electrospinning", Nano letters, vol. 6, no. 4, pp. 839-842, (2006).
[21] T. Subbiah, G. S. Bhat, R. W. Tock et al., "Electrospinning of nanofibers", Journal of applied polymer science, vol. 96, no. 2, pp. 557-569, (2005).
[22] G. I. Taylor, "Electrically driven jets", Proceedings of the Royal Society of London. A. Mathematical and Physical Sciences, vol. 313, no. 1515, pp. 453-475, (1969).
[23] E. D. Boland, G. E. Wnek, D. G. Simpson et al., "Tailoring tissue engineering scaffolds using electrostatic processing techniques: a study of poly (glycolic acid) electrospinning", Journal of Macromolecular Science, Part A, vol. 38, no. 12, pp. 1231-1243, (2001).
[24] G. F. Zheng, L. Y. Wang, H. L. Wang et al., "Deposition characteristics of direct-write suspended micro/nano-structures," in Advanced Materials Research, 2009, vol. 60: Trans Tech Publ, pp. 439-444.
[25] Z. L. Wang & J. Song, "Piezoelectric nanogenerators based on zinc oxide nanowire arrays", Science, vol. 312, no. 5771, pp. 242-246, (2006).
[26] F.-R. Fan, Z.-Q. Tian, & Z. L. Wang, "Flexible triboelectric generator", Nano energy, vol. 1, no. 2, pp. 328-334, (2012).
[27] R. Yang, Y. Qin, L. Dai et al., "Power generation with laterally packaged piezoelectric fine wires", Nature nanotechnology, vol. 4, no. 1, p. 34, (2009).
[28] L. S. Fang, C. Y. Tsai, M. H. Xu et al., "Hybrid nano-textured nanogenerator and self-powered sensor for on-skin triggered biomechanical motions", Nanotechnology, vol. 31, no. 15, p. 155502, (2020).
[29] C. Chen, C. Tsai, M. Xu et al., "A fully encapsulated piezoelectric–triboelectric hybrid nanogenerator for energy harvesting from biomechanical and environmental sources", Express Polymer Letters, vol. 13, no. 6, pp. 533-542, (2019).
[30] T. H. Lee, C. Y. Chen, C. Y. Tsai et al., "Near-field electrospun piezoelectric fibers as sound-sensing elements", Polymers, vol. 10, no. 7, p. 692, (2018).
[31] Y.-K. Fuh, S.-C. Li, C. Chen et al., "A fully packaged self-powered sensor based on near-field electrospun arrays of poly (vinylidene fluoride) nano/micro fibers", Express Polymer Letters, vol. 12, no. 2, (2018).
[32] Y.-K. Fuh, S.-C. Li, & C.-Y. Chen, "Piezoelectrically and triboelectrically hybridized self-powered sensor with applications to smart window and human motion detection", APL Materials, vol. 5, no. 7, p. 074202, (2017).
[33] Y. K. Fuh, B. S. Wang, & C.-Y. Tsai, "Self-Powered Pressure Sensor with fully encapsulated 3D printed wavy substrate and highly-aligned piezoelectric fibers array", Scientific reports, vol. 7, no. 1, pp. 1-7, (2017).
[34] Y. K. Fuh, Z. M. Huang, B. S. Wang et al., "Self-powered active sensor with concentric topography of piezoelectric fibers", Nanoscale research letters, vol. 12, no. 1, p. 44, (2017).
[35] Y.-K. Fuh & H.-C. Ho, "Highly flexible self-powered sensors based on printed circuit board technology for human motion detection and gesture recognition", Nanotechnology, vol. 27, no. 9, p. 095401, (2016).
[36] Y. K. Fuh & B. S. Wang, "Near field sequentially electrospun three-dimensional piezoelectric fibers arrays for self-powered sensors of human gesture recognition", Nano Energy, vol. 30, pp. 677-683, (2016).
[37] Y. K. Fuh, C. C. Kuo, Z. M. Huang et al., "A transparent and flexible graphene‐piezoelectric fiber generator", Small, vol. 12, no. 14, pp. 1875-1881, (2016).
[38] Y.-K. Fuh, J.-C. Ye, P.-C. Chen et al., "Hybrid energy harvester consisting of piezoelectric fibers with largely enhanced 20 V for wearable and muscle-driven applications", ACS applied materials & interfaces, vol. 7, no. 31, pp. 16923-16931, (2015).
[39] Y.-K. Fuh, P.-C. Chen, Z.-M. Huang et al., "Self-powered sensing elements based on direct-write, highly flexible piezoelectric polymeric nano/microfibers", Nano Energy, vol. 11, pp. 671-677, (2015).
[40] Y.-K. Fuh, P.-C. Chen, H.-C. Ho et al., "All-direction energy harvester based on nano/micro fibers as flexible and stretchable sensors for human motion detection", RSC Advances, vol. 5, no. 83, pp. 67787-67794, (2015).
[41] Y.-K. Fuh, J.-C. Ye, P.-C. Chen et al., "A highly flexible and substrate-independent self-powered deformation sensor based on massively aligned piezoelectric nano-/microfibers", Journal of Materials Chemistry A, vol. 2, no. 38, pp. 16101-16106, (2014).
[42] Y. J. Kim, J. Lee, S. Park et al., "Effect of the relative permittivity of oxides on the performance of triboelectric nanogenerators", RSC advances, vol. 7, no. 78, pp. 49368-49373, (2017).
[43] E. Alpaydin, Introduction to machine learning, MIT press, 2020.
[44] P. R. Norvig & S. A. Intelligence, A modern approach, Prentice Hall, 2002.
[45] M. Van Otterlo & M. Wiering, "Reinforcement learning and markov decision processes," in Reinforcement Learning: Springer, 2012, pp. 3-42.
[46] J. Schmidhuber, "Deep learning in neural networks: An overview", Neural networks, vol. 61, pp. 85-117, (2015).
[47] Y. LeCun, Y. Bengio, & G. Hinton, "Deep learning", nature, vol. 521, no. 7553, pp. 436-444, (2015).
[48] A. G. M. L. S. Fernandez, R. B. H. Bunke, & J. Schmiduber, "A novel connectionist system for improved unconstrained handwriting recognition", IEEE Transactions on Pattern Analysis and Machine Intelligence, vol. 31, no. 5, (2009).
[49] S. Hochreiter & J. Schmidhuber, "Long short-term memory", Neural computation, vol. 9, no. 8, pp. 1735-1780, (1997).
[50] A. Graves & J. Schmidhuber, "Framewise phoneme classification with bidirectional LSTM and other neural network architectures", Neural networks, vol. 18, no. 5-6, pp. 602-610, (2005).
[51] H. Mayer, F. Gomez, D. Wierstra et al., "A system for robotic heart surgery that learns to tie knots using recurrent neural networks", Advanced Robotics, vol. 22, no. 13-14, pp. 1521-1537, (2008).
[52] Y.-S. Park, J. Kim, J. M. Oh et al., "Near-Field Electrospinning for Three-Dimensional Stacked Nanoarchitectures with High Aspect Ratios", Nano letters, vol. 20, no. 1, pp. 441-448, (2019).
[53] H. C. Bidsorkhi, A. G. D’Aloia, G. De Bellis et al., "Nucleation effect of unmodified graphene nanoplatelets on PVDF/GNP film composites", Materials Today Communications, vol. 11, pp. 163-173, (2017).
[54] B. Yu, H. Yu, T. Huang et al., "A biomimetic nanofiber-based triboelectric nanogenerator with an ultrahigh transfer charge density", Nano Energy, vol. 48, pp. 464-470, (2018).
[55] Z. Wang, A. A. Volinsky, & N. D. Gallant, "Crosslinking effect on polydimethylsiloxane elastic modulus measured by custom‐built compression instrument", Journal of Applied Polymer Science, vol. 131, no. 22, (2014).
[56] A. Vinogradov & F. Holloway, "Electro-mechanical properties of the piezoelectric polymer PVDF", Ferroelectrics, vol. 226, no. 1, pp. 169-181, (1999).
[57] V. Bhavanasi, D. Y. Kusuma, & P. S. Lee, "Polarization Orientation, Piezoelectricity, and Energy Harvesting Performance of Ferroelectric PVDF‐TrFE Nanotubes Synthesized by Nanoconfinement", Advanced Energy Materials, vol. 4, no. 16, p. 1400723, (2014).
[58] N. Meng, X. Zhu, R. Mao et al., "Nanoscale interfacial electroactivity in PVDF/PVDF-TrFE blended films with enhanced dielectric and ferroelectric properties", Journal of Materials Chemistry C, vol. 5, no. 13, pp. 3296-3305, (2017). |