博碩士論文 107328014 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:43 、訪客IP:18.219.185.34
姓名 蔡雯琪(Wen-Chi Tsai)  查詢紙本館藏   畢業系所 能源工程研究所
論文名稱 柴氏生長氧化鎵晶體之流場與熱場數値分析
(Numerical simulation of Flow and Thermal Fields for β-Ga2O3 crystal during Czochralski Growth Process)
相關論文
★ 發光二極體電極設計與電流分佈模擬分析★ 外加水平式磁場柴氏長晶法生長矽單晶之熱流場數值模擬研究
★ 外加cusp磁場柴氏法生長單晶矽之熱流場及氧雜質傳輸數值分析★ MOCVD垂直式腔體中氮化鎵薄膜生長之模擬分析
★ 考量氣體分子 吸附性質之 MOCVD垂直反應腔體模擬分析★ Phosphor Packaging Design of white LED with Optical-Thermal-Electrical Coupling
★ 水平式MOCVD腔體中使用氣體脈衝方法生長氮化鋁薄膜之數值模擬與分析★ 外加Cusp磁場下柴氏法生長單晶矽之不同晶堝轉影響熱流場及氧傳輸數值分析
★ 水解二乙基鋅於近耦合噴淋式反對稱腔體 之MOCVD模擬設計分析★ MOCVD水平式腔體中氮化鎵薄膜製程碳濃度之模擬與傳輸現象分析
★ MOCVD 行星式腔體之模型建立與傳輸現象分析★ 柴氏法生長6~8吋矽單晶之高溫梯爐體與製程設計模擬
★ 300mm矽晶圓片於平坦度10奈米以下磊晶製程之數值模擬分析★ 以陽極處理法生長二氧化鈦奈米管於玻璃基板上之研究
★ 二段陽極處理法應用於鈦薄膜成長之研究★ 交流電發光二極體之接面溫度與熱阻量測研究
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 氧化鎵(Ga2O3)作為寬能隙氧化物半導體,由於其優異的材料性質,在化合物半導體產業中引起了高度興趣。β-Ga2O3可由液相生長,由於柴氏Czochralski(Cz)長晶技術具有較高的生長速度與品質控制,因此本研究中以數值模擬方法探討柴氏生長氧化鎵晶體過程之輸送現象。然而由於Ga2O3在高溫容易氧分解、晶體結構具有強烈劈裂面,及不同摻雜晶體下自由載子的熱輻射吸收性都將成為生長高品質氧化鎵晶體需克服的挑戰。目前生長高品質Ga2O3晶體仍待突破,對生長技術發最有助益的數值模擬技術仍在起步階段,所以本研究將延伸過去本實驗室對半透明氧化物晶體的模擬經驗,至使用Cz生長Ga2O3晶體的熱流輸送現象。
本研究就吸收係數、晶轉轉速、反向堝轉轉速、拉伸速度進行模擬並分析熱場、流場、固液界面形狀及晶體內熱輻射的現象。從研究中發現晶體內部輻射主要受吸收係數的影響,吸收係數越高晶體由體輻射轉為表輻射與其他部件進行熱交換,並使固液界面由凸向熔湯轉為凹向熔湯。晶轉及堝轉轉速增加造成熔湯內流場型態改變使熱場分部不均勻,固液界面上升凸率下降,同時使加熱器功率上升。拉伸速度的提升同樣影響熔湯內流場型態,固液界面上升凸率下降。固液界面的形狀將影響晶體內部熱應力的分部,凹向熔湯的界面形狀雖有較低的晶體熱應力,但此形狀容易造成生長過程不穩甚至產生螺旋型生長,減少晶體的可使用量。
摘要(英) Gallium oxide (Ga2O3), as a wide Band-gap oxide semiconductor, has aroused high attention in the compound semiconductor industry as its excellent material properties. β-Ga2O3 crystal could be grown from liquid phase. Due to a high growth rate and quality control, numerical simulation methods are used to investigate the Cz growth Ga2O3 crystal heat transfer phenomenon in this study. Ga2O3 is easily decomposed by oxygen at high temperature, the crystal structure has a strong crack surface, and the thermal radiation absorption of free carriers under different doped crystals. The growth of high-quality Ga2O3 crystals is still to breakthrough, and the most useful numerical simulation technology for growth technology is still in its infancy. This research will extend the laboratory’s simulation experience of semi-transparent oxide crystals to the Cz growth Ga2O3 crystal heat transfer phenomenon.
Different absorption coefficient; crystal and crucible rotation speed; and pulling rate are considered to investigate their effects on the variation of heat, flow, and interface shape. The numerical simulations show that the internal radiation of the crystal is mainly affected by absorption coefficient. The higher the absorption coefficient, the crystal radiate from bulk radiation to surface radiation, and the solid-liquid interface change from convex to concave. The increase of the crystal rotation and crucible rotation speed causes the change of the flow field pattern in the melt to make the thermal field uneven, which decreases the convexity of the interface and increases the heater power. The increase of the pulling rate also affects the flow field pattern in the melt and decreases the convexity of the interface. The shape of the solid-liquid interface will affect the division of the thermal stress inside the crystal. Although the shape of the interface of the concave to the melt has lower thermal stress of the crystal, this shape is easy to cause unstable growth process or even spiral growth, reducing the crystal Usage amount.
關鍵字(中) ★ 氧化鎵單晶
★ 柴氏法
★ 內部輻射
★ 數值模擬
關鍵字(英) ★ β-Ga2O3
★ CZ
★ Internal radiation
★ Numerical simulation
論文目次 摘要 I
Abstract II
致謝 III
目錄 IV
圖目錄 VI
表目錄 VIII
符號說明 IX
第一章 緒論 1
1-1前言 1
1-2 柴式長晶法(Cz)介紹 2
1-3文獻回顧 3
1-4研究目的與動機 6
第二章 物理模型與系統描述 11
2-1物理系統 11
2-2基本假設 12
2-3數學模型與邊界條件 12
2-3-1統御方程式 12
2-3-2邊界方程式 14
2-3-3熱應力方程式 16
2-4無因次參數式 16
第三章 研究方法 21
3-1紊流模型 21
3-2數值方法 21
3-3網格測試 22
3-4收斂性測試 22
3-5數值與實驗結果驗證 23
第四章 結果與討論 27
4-1吸收係數對熱場、流場、固液界面及晶體內部輻射的影響 27
4-1-1吸收係數對晶體熱場及熱輻射的影響 27
4-1-2吸收係數對晶體熱應力的影響 28
4-1-3吸收係數對熔湯熱場及流場的影響 28
4-1-4吸收係數的影響整體小結 28
4-2固定吸收係數50 m-1改變晶轉速度 29
4-2-1 固定吸收係數50 m-1改變晶轉速度對晶體熱場及熱輻射的影響 29
4-2-2固定吸收係數50 m-1改變晶轉速度對熔湯熱場及流場的影響 29
4-2-3固定吸收係數改變晶轉速度的影響小結 29
4-3固定晶轉1 rpm與堝轉反向旋轉搭配 30
4-3-1反向固定晶轉1 rpm對晶體熱場及熱輻射的影響 30
4-3-2反向固定晶轉1 rpm對熔湯熱場及流場的影響 30
4-3-3反向固定晶轉1 rpm轉速搭配小結 31
4-4固定吸收係數及晶堝轉速改變拉伸速度 31
4-4-1改變拉伸速度對晶體熱場及熱輻射的影響 31
4-4-2改變拉伸速度對熔湯熱場及流場的影響 31
4-4-3固定吸收係數及晶堝轉速改變拉伸速度整體小結 32
第五章 結論與未來研究方向 58
參考文獻 59
參考文獻 [1] M. A. Mastro, A. Kuratama, J. Calkins, J. Kim, F. Ren, S. J. Pearton, Opportunities and Future Directions for Ga2O3, ECS Journal of Solid State Science and Technology, Vol. 6, pp. 356 - 359, 2017.
[2] M. Higashiwaki, K. Sasaki, A. Kuramata, T. Masui, S. Yamakoshi, Gallium oxide (Ga2O3) metal-semiconductor field-effect transistors on single-crystal β-Ga2O3 (010) substrates, Applied Physics Letters, Vol. 100, 2012
[3] M. Baldini, Z. Galazkz, G. Wagner, Recent progress in the growth of β-Ga2O3 for power electronics applications, Materials Science in Semiconductor Processing, Vol. 78, pp. 132 – 146, 2018.
[4] Y. Tomm, P. Reiche, D. Klimm, T. Fukuda, Czochralski grown Ga2O3 crystals, Journal of Crystal Growth, Vol. 220, pp. 510-514, 2000.
[5] Z. Galazka, R. Uecker, K, Irmscher, M. Albrecht, D. Klimm, M. Pietsch, M. Brützam, R. Bertram, S. Ganschow, and R. Fornari, Czochralski growth and characterization of β-Ga2O3 single crystals, Crystal Research and Technology, Vol. 45, pp. 1299 – 1236, 2010.
[6] Z. Galazka, K. Irmscher, R. Uecker, R. Bertram, M. Pietsch, A. Kwasniewski, M. Naumann, T. Schulz, R. Schewski, D. Klimm, M. Bickermann, On the bulk β-Ga2O3 single crystals grown by the Czochralski method, Journal of Crystal Growth, Vol. 404, pp. 184 – 191, 2014.
[7] D. Schwabe, R. Uecker, M. Bernhagen, Z. Galazka, An analysis of and a model for spiral growth of Czochralski-grown oxide crystals with high melting point, Journal of Crystal Growth, Vol. 335, pp. 138 – 147, 2011.
[8] Z. Yuan, A. Anopchenko, N. Daldosso, R. Guider, D. N. Urrios, A. Pitanti, R. Spano, L. Pavesi, Silicon Nanocrystals as an Enabling Material for Silicon Photonics, Proceedings of the IEEE, Vol. 97, pp. 1250-1268, 2009.
[9] W. Miller, K. Bottcher, Z. Galazka, J. Schreuer, Numerical Modelling of the Czochralski Growth of β-Ga2O3, Crystals, pp. 26-40, 2017.
[10] C.-W. Lu and J.-C. Chen, Numerical computation of sapphire crystal growth using heat exchanger method, Journal of Crystal Growth, Vol. 225, pp. 274-281, 2001.
[11] C.-W. Lu, J.-C. Chen, L.-J. Hu, A numerical investigation of the thermal distribution effects in a heat-exchanger-method crystal growth system, Modelling and Simulation in Materials Science and Engineering, Vol. 10, pp. 147-162, 2002.
[12] J.-C. Chen and C.-W. Lu, Influence of the crucible geometry on the shape of the melt-crystal interface during growth of sapphire crystal using a heat-exchanger-method, Journal of Crystal Growth, Vol. 266, pp. 239-245, 2004.
[13] C.-W. Lu and J.-C. Chen, Influence of thermal conductivity on interface shape during growth of sapphire crystal using a heat-exchanger-method, Journal of Rare Earths, Vol. 24, pp. 222-227, 2006.
[14] T. P. Nguyen, Y. T. Hsieh, J.-C. Chen, C. Hu, H. B. Nguyen, Effect of crucible and crystal rotations on the convexity and the thermal stress in large size sapphire crystals during Czochralski growth, Journal of Crystal Growth, Vol. 468, pp. 514-525, 2017.
[15] T. P. Nguyen, H.-T. Chuang, J.-C. Chen, C. Hu, Effect of power history on the shape and the thermal stress of a large sapphire crystal during the Kyropoulos process, Journal of Crystal Growth, Vol. 484, pp. 43-49, 2018.
[16] Z. Galazka, Growth Measures to Achieve Bulk Single Crystals of Transparent Semiconducting and Conducting Oxides Chap.6, Handbook of Crystal Growth 2nd edition, pp. 209-218, 2015.
[17] D. B. Dingwell, Density of Ga2O3 Liquid, Journal of the American Cecamic Society, Vol. 75, pp.1656-1657, 1992.
[18] Xin Liu, Bing Gao, Koichi Kakimoto, Numerical investigation of carbon contamination during the melting process of Czochralski silicon crystal growth, Journal of Crystal Growth, Vol. 417, pp. 56-64, 2014
指導教授 陳志臣(Jyh-Chen Chen) 審核日期 2020-7-29
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明