參考文獻 |
[1] B. C. Bates, Z. W. Kundzewicz, S. Wu, and J. P. Palutikof, “Climate Change and Water.,” Tech. Pap. Intergovermental Panel Clim. Chnage, 2008, Accessed: Feb. 29, 2020. [Online]. Available: https://www.researchgate.net/publication/283720897_Climate_Change_and_Water_Technical_Paper_of_the_Intergovernmental_Panel_on_Climate_Change.
[2] F. R. Rijsberman, “Water scarcity: Fact or fiction?,” Agric. Water Manag., vol. 80, no. 1–3, pp. 5–22, Feb. 2006, doi: 10.1016/j.agwat.2005.07.001.
[3] IPCC, “AR5 Climate Change 2014 - Sythesis Report - Summary for Policymakers.” 2014.
[4] M. Qadir, B. R. Sharma, A. Bruggeman, R. Choukr-Allah, and F. Karajeh, “Non-conventional water resources and opportunities for water augmentation to achieve food security in water scarce countries,” Agric. Water Manag., vol. 87, no. 1, pp. 2–22, Jan. 2007, doi: 10.1016/j.agwat.2006.03.018.
[5] S. B. Roy, L. Chen, E. H. Girvetz, E. P. Maurer, W. B. Mills, and T. M. Grieb, “Projecting Water Withdrawal and Supply for Future Decades in the U.S. under Climate Change Scenarios,” Environ. Sci. Technol., vol. 46, no. 5, pp. 2545–2556, Mar. 2012, doi: 10.1021/es2030774.
[6] IPCC, “AR4 Climate Change 2007: Synthesis Report,” 2007. https://www.ipcc.ch/report/ar4/syr/ (accessed Feb. 22, 2020).
[7] L. J. Mata et al., “Latin America. Climate Change 2001, Impacts, Adaptation, and Vulnerability. Contribution of Working Group II to the Third Assessment Report of the Intergovernmental Panel on Climate Change,” Intergovermental Panel Clim. Change, 2001.
[8] C. Costa-Posada, “Adaptation to Climate Change in Colombia,” Rev. Ing., p. 8, 2007.
[9] J. D. Pabón, “El cambio climático global y su manifestación en Colombia,” Cuad. Geogr. Rev. Colomb. Geogr., vol. 0, no. 12, Art. no. 12, Jan. 2003.
[10] D. Alzate, E. Rojas, J. Mosquera, and J. Ramon, “Cambio Climático y Variabilidad Climática Para El Periodo 1981-2010 En Las Cuencas De Los Ríos Zulia y Pamplonita, Norte de Santander – Colombia,” Luna Azul, no. 40, Jan. 2015, doi: 10.17151/luaz.2015.40.10.
[11] M. C. García, A. P. Botero, F. A. B. Quiroga, and E. A. Robles, “Variabilidad climática, cambio climático y el recurso hídrico en Colombia,” Rev. Ing., vol. 36, pp. 60–64, 2012.
[12] A. F. Hurtado and O. J. Mesa, “Climate Change and Space-time Variability Of The Precipitatioj In Colombia,” Rev. EIA, vol. 12, no. 24, pp. 131–150, 2015.
[13] IDEAM, “National Water Study.” 2010.
[14] J. Ramirez-Villegas, M. Salazar, A. Jarvis, and C. E. Navarro-Racines, “A way forward on adaptation to climate change in Colombian agriculture: perspectives towards 2050,” Clim. Change, vol. 115, no. 3, pp. 611–628, Dec. 2012, doi: 10.1007/s10584-012-0500-y.
[15] D. Ruiz-Carrascal et al., “On the assessment of likely near-term changes in climate extremes in the densely-populated Magdalena-Cauca water shed, Colombia,” 2019.
44
[16] E. O. Ojeda B., “Informe Nacional Sobre La Gestion del Agua en Colombia. Recursos Hídricos, Agua Potable y Saneamiento.” Comision Economica Para Latino America y el Caribe, 2000.
[17] DANE, “Censo Nacional de Poblacion y Vivienda - ¿Dónde Estamos?,” 2018. https://sitios.dane.gov.co/cnpv/#!/donde_estamos (accessed Mar. 06, 2020).
[18] CORPONOR, “Plan de ordenación y manejo de la cuenca hidrográfica del río Zulia,” 2010, [Online]. Available: http://corponor.gov.co/publica_recursos/pomca/zulia/POMCH_COMPLETO-RIO_ZULIA.pdf.
[19] CORPONOR, “Plan de ordenación y manejo de la cuenca hidrografica del rio Pamplonita.” 2010, [Online]. Available: https://pdfs.semanticscholar.org/ca9e/005ea3eed7b2aa4b3a91c8a4da421754bbc6.pdf.
[20] IPCC, “Glossary — Global Warming of 1.5 oC,” 2019. https://www.ipcc.ch/sr15/chapter/glossary/ (accessed Feb. 29, 2020).
[21] C. J. Vörösmarty, P. Green, J. Salisbury, and R. B. Lammers, “Global Water Resources: Vulnerability from Climate Change and Population Growth,” Science, vol. 289, no. 5477, pp. 284–288, Jul. 2000, doi: 10.1126/science.289.5477.284.
[22] R. H. Moss et al., “The next generation of scenarios for climate change research and assessment | Nature,” 2010. https://www.nature.com/articles/nature08823 (accessed Sep. 20, 2019).
[23] J. F. Feenstra, I. Burton, J. B. Smith, and R. S. J. Tol, Handbook on Methods for Climate Change Impact Assessment and Adaptation Strategies. United Nation Environmental Programme, 1998.
[24] W. L. Gates et al., “Climate models - evaluation. In Climate Change 1992: The Supplementary Report to the IPCC Scientific Assessment.,” Camb. Univ. Press, 1996.
[25] IPCC, “Guidance on the use of data,” 1998. https://www.ipcc-data.org/guidelines/pages/gcm_guide.html (accessed Mar. 03, 2020).
[26] IPCC, “Evaluation of Climate Models — IPCC,” 2014. https://www.ipcc.ch/report/ar5/wg1/evaluation-of-climate-models/ (accessed Mar. 06, 2020).
[27] A. Gaur and S. P. Simonovic, “Chapter 4 - Introduction to Physical Scaling: A Model Aimed to Bridge the Gap Between Statistical and Dynamic Downscaling Approaches,” in Trends and Changes in Hydroclimatic Variables, R. Teegavarapu, Ed. Elsevier, 2019, pp. 199–273.
[28] S. H. Pour, S. Shahid, E.-S. Chung, and X.-J. Wang, “Model output statistics downscaling using support vector machine for the projection of spatial and temporal changes in rainfall of Bangladesh,” Atmospheric Res., vol. 213, pp. 149–162, Nov. 2018, doi: 10.1016/j.atmosres.2018.06.006.
[29] A. Shaukat et al., “Assessment of climate extremes in future projections downscaled by multiple statistical downscaling methods over Pakistan,” Atmospheric Res., vol. 222, pp. 114–133, 2019, doi: 10.1016/j.atmosres.2019.02.009.
[30] J. Evans, J. McGregor, and K. McGuffie, “Chapter 9 - Future Regional Climates,” in The Future of the World’s Climate (Second Edition), A. Henderson-Sellers and K. McGuffie, Eds. Boston: Elsevier, 2012, pp. 223–250.
[31] C. Navarro-Racines, J. Tarapues, P. Thornton, A. Jarvis, and J. Ramirez-Villegas, “High-resolution and bias-corrected CMIP5 projections for climate change impact assessments,” Sci. Data, vol. 7, no. 1, p. 7, Dec. 2020, doi: 10.1038/s41597-019-0343-8.
[32] F. Giorgi and L. O. Mearns, “Introduction to special section: Regional Climate Modeling Revisited,” J. Geophys. Res. Atmospheres, vol. 104, no. D6, pp. 6335–6352, 1999, doi: 10.1029/98JD02072.
[33] S. K. Jalota, B. B. Vashisht, S. Sharma, and S. Kaur, “Chapter 2 - Climate Change Projections,” in Understanding Climate Change Impacts on Crop Productivity and Water Balance, S. K. Jalota, B. B. Vashisht, S. Sharma, and S. Kaur, Eds. Academic Press, 2018, pp. 55–86.
[34] L. R. Leung, Y. Qian, X. Bian, W. M. Washington, J. Han, and J. O. Roads, “Mid-Century Ensemble Regional Climate Change Scenarios for the Western United States,” Clim. Change, vol. 62, no. 1, pp. 75–113, Jan. 2004, doi: 10.1023/B:CLIM.0000013692.50640.55.
[35] H. Wheater, S. Sorooshian, and K. D. Sharma, Hydrological Modelling in Arid and Semi-Arid Areas. Cambridge University Press, 2007.
[36] G. K. Devia, B. P. Ganasri, and G. S. Dwarakish, “A Review on Hydrological Models,” Aquat. Procedia, vol. 4, pp. 1001–1007, Jan. 2015, doi: 10.1016/j.aqpro.2015.02.126.
[37] IPCC, “Socio-Economic Data and Scenarios,” 2019. https://sedac.ciesin.columbia.edu/ddc/ar5_scenario_process/RCPs.html (accessed Mar. 04, 2020).
[38] B. Felzer and P. Heard, “Precipitation differences among GCMs used for the U.S. National Assesment,” J. Am. Water Resour. Assoc., vol. 35, pp. 1327–1339, 1999.
[39] P. G. Hess, D. S. Battisti, and P. J. Rasch, “Maintenance of the Intertropical Convergence Zones and the Large-Scale Tropical Circulation on a Water-covered Earth,” J. Atmospheric Sci., vol. 50, no. 5, pp. 691–713, Mar. 1993, doi: 10.1175/1520-0469(1993)050<0691:MOTICZ>2.0.CO;2.
[40] C. I. of H. IDEAM Meteorology and Environmental Studies, “IDEAM - ArcGIS Web Application- Weather Sation Data,” 2018. http://dhime.ideam.gov.co/atencionciudadano/ (accessed Sep. 20, 2019).
[41] DANE, “Empleo y desempleo,” 2019. https://www.dane.gov.co/index.php/estadisticas-por-tema/mercado-laboral/empleo-y-desempleo (accessed Mar. 20, 2020).
[42] A. Garcia, “Cúcuta, víctima de la crisis de Venezuela al otro lado de la frontera,” Infobae, 2019. https://www.infobae.com/america/colombia/2019/03/09/cucuta-victima-de-la-crisis-de-venezuela-al-otro-lado-de-la-frontera/ (accessed Feb. 28, 2020).
[43] R. P. on C. C. CCAFS Agriculture and Food Security, “Data - CCAFS Climate,” 2015. http://www.ccafs-climate.org/data_spatial_downscaling/ (accessed Sep. 20, 2019).
[44] WorldClim, “WorldClim - Global Climate Data | WorldClim Version 1,” 2019. https://www.worldclim.org/version1 (accessed Sep. 20, 2019).
[45] R. J. Blakeslee, “Lightning Imaging Sensor (LIS) on TRMM Science Data.” NASA Global Hydrology Resource Center DAAC, 1998, doi: 10.5067/lis/lis/data201.
[46] R. G. Barry, “Mountain Weather and Climate,” Cambridge Core, Jul. 2008. /core/books/mountain-weather-and-climate/AB88E7CA8DE0FD36123922EBBCBF3B1E (accessed Mar. 22, 2020).
[47] D. M. Livingstone, A. F. Lotter, and I. R. Walkery, “The Decrease in Summer Surface Water Temperature with Altitude in Swiss Alpine Lakes: A Comparison with Air Temperature Lapse Rates,” Arct. Antarct. Alp. Res., vol. 31, no. 4, pp. 341–352, Nov. 1999, doi: 10.1080/15230430.1999.12003319.
[48] R. C. Tabony, “The variation of surface temperature with altitude,” Meteorol. Mag., vol. 114, pp. 37–48, 1985.
[49] S. Manabe, “Climate and the ocean circulation,” Mon. Weather Rev., vol. 97, no. 11, pp. 739–774, Nov. 1969, doi: 10.1175/1520-0493(1969)097<0739:CATOC>2.3.CO;2.
[50] J. C. Schaake, “From climate to flow.,” Clim. Change US Water Resour., pp. 177–206, 1990.
[51] Poveda Germán et al., “Linking Long-Term Water Balances and Statistical Scaling to Estimate River Flows along the Drainage Network of Colombia,” J. Hydrol. Eng., vol. 12, no. 1, pp. 4–13, Jan. 2007, doi: 10.1061/(ASCE)1084-0699(2007)12:1(4).
[52] IDEAM, “Estudio Nacional del Agua 2010.” 2010.
[53] A. Kleidon and S. Schymanski, “Thermodynamics and optimality of the water budget on land: A review,” Geophys. Res. Lett., vol. 35, no. 20, 2008, doi: 10.1029/2008GL035393.
[54] C. Lorenz and H. Kunstmann, “The Hydrological Cycle in Three State-of-the-Art Reanalyses: Intercomparison and Performance Analysis,” J. Hydrometeorol., vol. 13, no. 5, pp. 1397–1420, Apr. 2012, doi: 10.1175/JHM-D-11-088.1.
[55] S. Seneviratne, P. Viterbo, D. Lüthi, and C. Schär, “Inferring changes in terrestrial water storage using ERA-40 reanalysis data: The Mississippi River basin.,” 2003. .
[56] C. W. Thornthwaite, “AN APPROACH TOWARDS A RATIONAL CLASSIFICATION OF CLIMATE,” 1948, doi: 10.1097/00010694-194807000-00007.
[57] M. I. Budyko and D. H. Miller, Climate and Life, Volume 18 - 1st Edition. Academic Press Inc., 1974.
[58] K. Fraedrich, “A Parsimonious Stochastic Water Reservoir: Schreiber’s 1904 Equation,” J. Hydrometeorol., vol. 11, no. 2, pp. 575–578, Oct. 2009, doi: 10.1175/2009JHM1179.1.
[59] ESRI, “Performing cross-validation and validation—Help | Documentación,” 2019. https://desktop.arcgis.com/es/arcmap/latest/extensions/geostatistical-analyst/performing-cross-validation-and-validation.htm#GUID-7460E552-DAF6-4D04-8247-8B5866D7B06D (accessed Jul. 16, 2020).
[60] IPCC, “Summary for Policymakers — Global Warming of 1.5 oC,” 2018. https://www.ipcc.ch/sr15/chapter/spm/ (accessed Feb. 22, 2020).
[61] N. W. Arnell, “Global warming, river flows and water resources.,” Glob. Warm. River Flows Water Resour., 1996, Accessed: Feb. 22, 2020. [Online]. Available: https://www.cabdirect.org/cabdirect/abstract/19971903551.
[62] K. E. Trenberth, “Changes in precipitation with climate change,” Clim. Res., vol. 47, no. 1–2, pp. 123–138, Mar. 2011, doi: 10.3354/cr00953.
[63] M. G. Bosilovich, J. Chen, F. R. Robertson, and R. F. Adler, “Evaluation of Global Precipitation in Reanalyses,” J. Appl. Meteorol. Climatol., vol. 47, no. 9, pp. 2279–2299, Sep. 2008, doi: 10.1175/2008JAMC1921.1.
[64] S. P. de Szoeke and S.-P. Xie, “The Tropical Eastern Pacific Seasonal Cycle: Assessment of Errors and Mechanisms in IPCC AR4 Coupled Ocean–Atmosphere General Circulation Models,” J. Clim., vol. 21, no. 11, pp. 2573–2590, Jun. 2008, doi: 10.1175/2007JCLI1975.1.
[65] IPCC, “AR4 Climate Change 2007: The Physical Science Basis.” Cambridge University Press, 2007, Accessed: Apr. 13, 2020. [Online]. Available: https://www.ipcc.ch/report/ar4/wg1/.
[66] B. G. Liepert and M. Previdi, “Do Models and Observations Disagree on the Rainfall Response to Global Warming?,” J. Clim., vol. 22, no. 11, pp. 3156–3166, Jun. 2009, doi: 10.1175/2008JCLI2472.1.
[67] D. J. Lorenz and E. T. DeWeaver, “The Response of the Extratropical Hydrological Cycle to Global Warming,” J. Clim., vol. 20, no. 14, pp. 3470–3484, Jul. 2007, doi: 10.1175/JCLI4192.1.
[68] G.-Y. Yang and J. Slingo, “The Diurnal Cycle in the Tropics,” Mon. WEATHER Rev., vol. 129, p. 18, 2001.
[69] I. Richter and C. R. Mechoso, “Orographic Influences on Subtropical Stratocumulus,” J. Atmospheric Sci., vol. 63, no. 10, pp. 2585–2601, Oct. 2006, doi: 10.1175/JAS3756.1.
[70] H. Xu, Y. Wang, and S.-P. Xie, “Effects of the Andes on Eastern Pacific Climate: A Regional Atmospheric Model Study,” J. Clim., vol. 17, no. 3, pp. 589–602, Feb. 2004, doi: 10.1175/1520-0442(2004)017<0589:EOTAOE>2.0.CO;2.
[71] D. a Stainforth, M. r Allen, E. r Tredger, and L. a Smith, “Confidence, uncertainty and decision-support relevance in climate predictions,” Philos. Trans. R. Soc. Math. Phys. Eng. Sci., vol. 365, no. 1857, pp. 2145–2161, Aug. 2007, doi: 10.1098/rsta.2007.2074.
[72] J. D. Herman, J. D. Quinn, S. Steinchneider, M. Giuliani, and S. Fletcher, “Climate Adaptation as a Control Problem: Review and Perspectiveson Dynamic Water Resources Planning Under Uncertainty,” Water Resour. Res., vol. 56, no. e24389, 2020, Accessed: Feb. 19, 2020. [Online]. Available: https://doi.org/10.1029/2019WR025502.
[73] Fletcher Sarah M., Miotti Marco, Swaminathan Jaichander, Klemun Magdalena M., Strzepek Kenneth, and Siddiqi Afreen, “Water Supply Infrastructure Planning: Decision-Making Framework to Classify Multiple Uncertainties and Evaluate Flexible Design,” J. Water Resour. Plan. Manag., vol. 143, no. 10, p. 04017061, Oct. 2017, doi: 10.1061/(ASCE)WR.1943-5452.0000823.
[74] F. L. Paton, H. R. Maier, and G. C. Dandy, “Including adaptation and mitigation responses to climate change in a multiobjective evolutionary algorithm framework for urban water supply systems incorporating GHG emissions,” Water Resour. Res., vol. 50, no. 8, pp. 6285–6304, 2014, doi: 10.1002/2013WR015195. |