博碩士論文 107523021 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:23 、訪客IP:18.221.243.29
姓名 蔡佩名(Pei-Ming Cai)  查詢紙本館藏   畢業系所 通訊工程學系
論文名稱 低複雜度之相差空間調變架構
(Low-Complexity Differential Spatial Modulation Schemes)
相關論文
★ 全像光資訊儲存系統的編解碼★ 具有快速改變載波相位之籬柵編碼MPSK 的非同調解碼
★ 用於非同調解碼之多層次編碼調變★ 么正空間時間籬柵碼之解碼演算法
★ 由多層次編碼所架構之非同調碼★ 用於非同調檢測之與空時區塊碼連結的區塊編碼調變
★ 用於正交分頻多工系統具延遲處理器的空時碼★ 用於非同調區塊編碼MPSK之A*解碼演算法
★ 在塊狀衰退通道上的籬柵么正空時調變★ 用於非同調區塊編碼MPSK之Chase演算法
★ 使用決定回授檢測之相差空時調變的 一種趨近同調特性★ 具延遲處理器的空時碼之軟式輸入輸出遞迴解碼
★ 用於非同調區塊編碼MPSK的最大可能性解碼演算法★ 具頻寬效益之非同調調變
★ 非同調空時渦輪碼★ 循環字首及補零正交分頻多工系統經預編碼後之頻譜比較
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 相差空間調變是一種不需要前導訊號和通道估計的空間調變,但是相差空間調變原始所用的非同調最大可能性檢測器非常複雜。在本論文中,我們提出了兩個低複雜度之相差空間調變架構,其一是針對傳送多樣性為2的區塊編碼之相差空間調變,來降低解碼複雜度的改良設計;另一個則是改良了相差空間調變的位元映射,成為具有多個位元映射組,且仍保持全速率的相差空間調變。與原方法相比,採用我們提出之複雜度的架構後,均將能應用於更多傳送天線的系統,並且同時還改善了錯誤性能。其中對於區塊編碼之相差空間調變的設計可分為,降低複雜度的檢測器,以及與檢測器匹配的複數值天線索引矩陣,雖此檢測器之錯誤性能略差於非同調最大可能性檢測器,但整體之錯誤性能仍優於原方法;而所設計的多個位元映射組,可應用於任一相差空間調變方案的位元映射步驟,來增加電腦模擬時映射之位元數的上限,同時些微地改善錯誤性能。
摘要(英) Differential Spatial modulation (DSM) is a kind of Spatial modulation technique that does not need pilot symbols and channel estimation. The original noncoherent detection for DSM is very complicated.In this thesis, we propose two low-complexity DSM schemes. One of them is an improved design to reduce the decoding complexity for block coded DSM (BC-DSM) with a transmission diversity of 2. The other is the bit-mapping of full-rate DSM with multiple mapping groups.Compared with the original method, our low-complexity schemes are suitable for systems with many transmission antennas, and have better error performance. The design of BC-DSM can be divided into a detector with reduced complexity, and complex-valued antenna-index matrices that matching with the detector. Although the error performance of this detector is slightly worse than the noncoherent maximum-likelihood detector, the overall error performance is still better than the original method.The designed multiple mapping groups can be applied to the bit-mapping step of any DSM to increase the upper limit of the number of mapped bits during the computer simulation, while slightly improving the error performance.
關鍵字(中) ★ 相差空間調變
★ 區塊編碼
★ 映射組
★ 低複雜度
關鍵字(英)
論文目次 摘要.........................................................i
Abstract....................................................ii
致謝.......................................................iii
目錄........................................................iv
圖目錄......................................................vi
表目錄.....................................................vii
第一章 緒論..................................................1
1.1背景與研究動機............................................1
1.2內容介紹..................................................2
第二章 相關背景回顧...........................................3
2.1相差空間調變..............................................3
2.2文獻[9]提出的低複雜度非同調最大可能性檢測器..................5
2.3文獻[5]位元映射...........................................7
第三章 區塊編碼之相差空間調變的低複雜度檢測.....................8
3.1文獻[21]傳送多樣性為2的區塊編碼之相差空間調變回顧............8
3.2區塊編碼之相差空間調變的低複雜度檢測.......................12
3.2.1傳送端設計.............................................12
3.2.2接收端設計.............................................16
3.2.3模擬結果與探討.........................................18
3.2.4小節..................................................23
第四章 巨量天線的低複雜度相差空間調變方案......................24
4.1提出的全速率相差空間調變方案[20]...........................24
4.1.1位元映射[20]...........................................24
4.1.2新的低複雜度檢測演算法[20]..............................27
4.1.3提出的檢測法與其它現有之檢測技術的比較[20]...............30
4.1.4修改規則與範例:含有單一映射組的相差空間調變[20]..........31
4.2用於巨量傳送天線的多映射組之安排,以全映射DSM實現...........34
4.2.1多映射組的分組安排......................................34
4.2.2理想搜尋的分組與全速率映射組列表.........................38
4.2.3全映射DSM與檢測之策略[20]...............................43
第五章 結論.................................................50
參考文獻....................................................51
參考文獻 [1] R. Mesleh, H. Haas, S. Sinanovic, C. Ahn, and S. Yun, ‘‘Spatial modulation,’’ IEEE Trans. Veh. Technol., vol. 57, no. 4, pp. 2228–2242, Jul. 2008.
[2] J. Jeganathan, A. Ghrayeb, and L. Szczecinski, ‘‘Spatial modulation: Optimal detection and performance analysis,’’ IEEE Commun. Lett., vol. 12, no. 8, pp. 545–547, Aug. 2008.
[3] J. Jeganathan, A. Ghrayeb, L. Szczecinski, and A. Ceron, ‘‘Space shift keying modulation for MIMO channels,’’ IEEE Trans. Wireless Commun., vol. 8, no. 7, pp. 3692–3703, Jul. 2009.
[4] M. Renzo, H. Haas, and P. Grant, ‘‘Spatial modulation for multiple-antenna wireless systems: A survey,’’ IEEE Commun. Mag., vol. 49, no. 12, pp. 182–191, Dec. 2011.
[5] Y. Bian, X. Cheng, M. Wen, L. Yang, H. V. Poor, and B. Jiao, ‘‘Differential spatial modulation,’’ IEEE Trans. Veh. Technol., vol. 64, no. 7, pp. 3262–3268, Jul. 2015.
[6] N. Ishikawa and S. Sugiura, ‘‘Unified differential spatial modulation,’’ IEEE Wireless Commun. Lett., vol. 3, no. 4, pp. 337–340, Aug. 2014.
[7] M. Wen, X. Cheng, Y. Bian, and H. V. Poor, ‘‘A low-complexity near-ML differential spatial modulation detector,’’ IEEE Signal Process. Lett., vol. 22, no. 11, pp. 1834–1838, Nov. 2015.
[8] Z. Li, X. Cheng, S. Han, M. Wen, L.-Q. Yang, and B. Jiao, ‘‘A low-complexity optimal sphere decoder for differential spatial modulation,’’ in Proc. IEEE Global Commun. Conf. (GLOBECOM), San Diego, CA, USA, Dec. 2015, pp. 1–6.
[9] R. Y. Wei and T. Y. Lin, ‘‘Low-complexity differential spatial modulation,’’ IEEE Wireless Commun. Lett., vol. 8, no. 2, pp. 356–359, Apr. 2019.
[10] L. Xiao, P. Yang, X. Lei, Y. Xiao, S. Fan, S. Li, and W. Xiang, ‘‘A low-omplexity detection scheme for differential spatial modulation,’’ IEEE Commun. Lett., vol. 19, no. 9, pp. 1516–1519, Sep. 2015.
[11] N. Ishikawa and S. Sugiura, ‘‘Rectangular differential spatial modulation for open-loop noncoherent massive-MIMO downlink,’’ IEEE Trans. Wireless Commun., vol. 16, no. 3, pp. 1908–1920, Mar. 2017.
[12] B. M. Hochwald and W. Sweldens, ‘‘Differential unitary space-time modulation,’’ IEEE Trans. Commun., vol. 48, no. 12, pp. 2041–2052, Dec. 2000.
[13] C. Gao, A. M. Haimovich, and D. Lao, ‘‘Multiple-symbol differential detection for MPSK space-time block codes: Decision metric and performance analysis,’’ IEEE Trans. Commun., vol. 54, no. 8, pp. 1502–1510, Aug. 2006.
[14] H. Leib, ‘‘Data-aided noncoherent demodulation of DPSK,’’ IEEE Trans. Commun., vol. 43, nos. 2–4, pp. 722–725, Feb. 1995.
[15] R. Rajashekar, N. Ishikawa, S. Sugiura, K. V. S. Hari, and L. Hanzo, ‘‘Full-diversity dispersion matrices from algebraic field extensions for differential spatial modulation,’’ IEEE Trans. Veh. Technol., vol. 66, no. 1, pp. 385–394, Jan. 2017.
[16] R. Rajashekar, C. Xu, N. Ishikawa, S. Sugiura, K. V. S. Hari, and L. Hanzo, ‘‘Algebraic differential spatial modulation is capable of approaching the performance of its coherent counterpart,’’ IEEE Trans. Commun., vol. 65, no. 10, pp. 4260–4273, Oct. 2017.
[17] C. Xu, R. Rajashekar, N. Ishikawa, S. Sugiura, and L. Hanzo, ‘‘Single-RF index shift keying aided differential space–time block coding,’’ IEEE Trans. Signal Process., vol. 66, no. 3, pp. 773–788, Feb. 2018.
[18] C. Xu, P. Zhang, R. Rajashekar, N. Ishikawa, S. Sugiura, L. Wang, and L. Hanzo, ‘‘Finite-cardinality single-RF differential space-time modulation for improving the diversity-throughput tradeoff,’’ IEEE Trans. Commun., vol. 67, no. 1, pp. 318–335, Jan. 2019.
[19] B. L. Hughes, ‘‘Differential space-time modulation,’’ IEEE Trans. Inf. Theory, vol. 46, no. 7, pp. 2567–2578, Nov. 2000.
[20] R. Y. Wei, “Low-complexity differential spatial modulation schemes for a lot of antennas,’’ IEEE Access, vol. 8, pp. 63725-63734, 2020.
[21] 蔡譯緯, “相差空間調變的進階結果,” 國立中央大學通訊工程研究所,碩士論文, 六月.2019
[22] 許嘉瑀, “籬柵編碼之相差空時調變的碼搜尋,” 國立中央大學通訊工程研究所,碩士論文, 六月.2016
[23] M. Tao and R. S. Cheng, “Trellis-coded differential unitary space-time modulation over flat fading channels,” IEEE Trans. Commun., pp. 587–596, Apr. 2003.
[24] G.Ungerboeck, “Trellis-coded modulation with redundant signal sets-part I: introduction, “IEEE Commun. Mag., vol. 25, no. 2, pp. 5-11, Feb. 1987.
[25] R. Rajashekar, N. Ishikawa, S. Sugiura, K. V. S. Hari, and L. Hanzo,“Full-diversity dispersion matrices from algebraic field extensions for differential spatial modulation,” IEEE Trans. Veh. Technol., vol. 66, no. 1, pp. 385–394, Jan. 2017.
[26] R. Y. Wei and J. A. Ritcey, “Differential trellis coded modulation with state dependent mappings,” Asilomar Conference on Signals, Systems, and Computers, CA, USA, Nov. 2014.
[27] 曾紹維, “差分空時籬柵碼,” 國立中央大學通訊工程研究所,碩士論文, 七月. 2014.
指導教授 魏瑞益(Ruey-Yi Wei) 審核日期 2020-7-23
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明