摘要(英) |
Employees are important assets of any organization. When a good employee leaves the organization, in addition to the extra costs the organization may have, it may also affect other employees. Ensure employee resources are the core of the organization. If the organization does not pay attention to employees and employees are dissatisfied with their work, the idea of resignation may arise. On the contrary, the organization′s emphasis on and training of employees can reduce employee turnover thoughts. However, the departure of an employee is not only the departure of the organization record, understanding why the employee leave is the focus of the organization.
This study uses the personnel management system of the National Central University as a source of information to study the on-the-job experience model of faculty and staff. In this study, we explored the experience mode of faculty and staff in a sequential pattern mining and analyzed the reasons for leaving after the personnel transfer. The purpose is to assist personnel-related decision-making units with the results of the research and provide results that are worthy of reference. |
參考文獻 |
[1] 員工離職對組織現況之影響-以高雄市私立幼兒園為例. 2018. PhD Thesis.
[2] 吳孟樺. 政府部門離職傾向之探討-以臺北市政府為例. 中國行政評論, 2017, 23.3: 64-98
[3] 周日耀. 員工對組織實施人才管理制度之認知與個人才能發展, 離職傾向及生涯發展之關聯性探討-以個人成長需求為調節變項. 中央大學人力資源管理研究所碩士在職專班學位論文, 2008, 1-196.
[4] FAYYAD, Usama; PIATETSKY-SHAPIRO, Gregory; SMYTH, Padhraic. The KDD process for extracting useful knowledge from volumes of data. Communications of the ACM, 1996, 39.11: 27-34.
[5] 以資料探勘技術探討製程廢品率之關聯分析. 2014. PhD Thesis.
[6] 林晏霆. 以資料探勘技術預測員工離職傾向之研究-以某緊固件公司越南廠為例. 逢甲大學資訊工程學系學位論文, 2016, 2016 年: 1-47.
[7] 李建億; 蔡芳遠. 應用資料探勘技術於網路專題學習活動之分析. 南師學報: 教育類, 2004, 38.1: 1-23.
[8] 王彥博. 以資料探勘技術應用於醫療資料庫之住院跌倒研究探討. 2014. PhD Thesis. 王彥博.
[9] 以資料探勘技術分析來臺旅遊服務品質滿意度-以 2009~ 2012 年入境旅客為例. 2014. PhD Thesis.
[10] 以資料探勘預測信用卡違約風險. 2018. PhD Thesis.
[11] AGRAWAL, Rakesh; IMIELIŃSKI, Tomasz; SWAMI, Arun. Mining association rules between sets of items in large databases. In: Proceedings of the 1993 ACM SIGMOD international conference on Management of data. 1993. p. 207-216.
[12] 簡禎富; 許嘉裕. 資料挖礦與大數據分析. Qian cheng wen hua shi ye you xian gong si, 2014.
[13] AGRAWAL, Rakesh; SRIKANT, Ramakrishnan. Mining sequential patterns. In: Proceedings of the eleventh international conference on data engineering. IEEE, 1995. p. 3-14.
[14] SRIKANT, Ramakrishnan; AGRAWAL, Rakesh. Mining sequential patterns: Generalizations and performance improvements. In: International Conference on Extending Database Technology. Springer, Berlin, Heidelberg, 1996. p. 1-17.
[15] PEI, Jian, et al. Mining sequential patterns by pattern-growth: The prefixspan approach. IEEE Transactions on knowledge and data engineering, 2004, 16.11: 1424-1440.
[16] RIVEST, Ronald; DUSSE, S. The MD5 message-digest algorithm. 1992.
[17] 基於特徵之多目的影像浮水印以抵抗惡意攻擊. 2006. PhD Thesis.
[18] RFID 資料安全性防護機制之研究-以結合 AES 與 MD5 技術為例; Research of RFID Data Security Protection Mechanism-An Example of Combining the Technology of AES and MD5. 2010.
[19] 柏銀; 李志蜀; 朱興東。 MD5算法及其在遠程身份認證中的應用。 四川大學學報:司法版,2006,43.2:305-309。
[20] 國立中央大學校務發展規劃及願景
http://pdc.adm.ncu.edu.tw/omi/data/E1.pdf
[21] GAY, Lorraine R.; MILLS, Geoffrey E.; AIRASIAN, Peter W. Educational research: Competencies for analysis and application. 1992. |